Journal of Chinese Pharmaceutical Sciences ›› 2021, Vol. 30 ›› Issue (7): 545-555.DOI: 10.5246/jcps.2021.07.043
• Review • Next Articles
Dewi Melani Hariyadi1,*(), Esti Hendradi1, Herlina Eka Pratama1, Mahardian Rahmadi2
Received:
2020-12-05
Revised:
2021-02-11
Accepted:
2021-03-05
Online:
2021-07-27
Published:
2021-07-27
Contact:
Dewi Melani Hariyadi
About author:
Dr Dewi Melani Hariyadi completed her PhD in School of Pharmacy, University of Queensland, Australia. Her doctoral research theme was to develop microparticles delivery systems for small molecules drug and proteins model. For her Master thesis at the same university, she engages in research for vaccine adjuvant formulation. These research experiences had led to further pharmaceutics research that resulted in several publications in the International scopus indexed journals. Dr Hariyadi was also an academic at Faculty of Pharmacy Universitas Airlangga and committed to teaching pharmacy undergraduates and postgraduates. Dr Hariyadi is a member of Nanotechnology and Drug Delivery System research group at the Faculty of Pharmacy Universitas Airlangga. Her research mainly involves developing formulation of drug models as well as cosmetics delivery system into desired nano and micro systems through different routes applications (oral, inhalation or transdermal), evaluating pre formulation aspects and studying applications of these delivery systems for diseases treatment. |
Supporting:
Dewi Melani Hariyadi, Esti Hendradi, Herlina Eka Pratama, Mahardian Rahmadi. Microspheres as pulmonary delivery systems - A review[J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(7): 545-555.
[1] |
Santiwarangkool, S.; Akita, H.; Khalil, I.A.; Abd Elwakil, M.M.; Sato, Y.; Kusumoto, K.; Harashima, H. A study of the endocytosis mechanism and transendothelial activity of lung-targeted GALA-modified liposomes.J. Control. Release. 2019, 307, 55–63.
|
[2] |
Saigal, A.; Ng, W.K.; Tan, R.B.H.; Chan, S.Y. Development of controlled release inhalable polymeric microspheres for treatment of pulmonary hypertension. Int. J. Pharm. 2013, 450, 114–122.
|
[3] |
Feng, T.S.; Tian, H.Y.; Xu, C.N.; Lin, L.; Xie, Z.G.; Lam, M.H.W.; Liang, H.J.; Chen, X.S. Synergistic co-delivery of doxorubicin and paclitaxel by porous PLGA microspheres for pulmonary inhalation treatment. Eur. J. Pharm. Biopharm. 2014, 88, 1086–1093.
|
[4] |
Grenha, A.; Remuñán-López, C.; Carvalho, E.L.S.; Seijo, B. Microspheres containing lipid/chitosan nanoparticles complexes for pulmonary delivery of therapeutic proteins. Eur. J. Pharm. Biopharm. 2008, 69, 83–93.
|
[5] |
Yang, T.T.; Wen, B.F.; Liu, K.; Qin, M.; Gao, Y.Y.; Ding, D.J.; Li, W.T.; Zhang, Y.X.; Zhang, W.F. Cyclosporine A/porous quaternized chitosan microspheres as a novel pulmonary drug delivery system. Artif. Cells Nanomed. Biotechnol. 2018, 46, 552–564.
|
[6] |
Hirota, K.; Hasegawa, T.; Nakajima, T.; Inagawa, H.; Kohchi, C.; Soma, G.I.; Makino, K.; Terada, H. Delivery of rifampicin-PLGA microspheres into alveolar macrophages is promising for treatment of tuberculosis. J. Control. Release. 2010, 142, 339–346.
|
[7] |
Manconi, M.; Manca, M.L.; Valenti, D.; Escribano, E.; Hillaireau, H.; Fadda, A.M.; Fattal, E. Chitosan and hyaluronan coated liposomes for pulmonary administration of curcumin. Int. J. Pharm. 2017, 525, 203–210.
|
[8] |
Gidwani, B.; Vyas, A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. Biomed. Res. Int. 2015, 2015, 198268.
|
[9] |
Gaspar, M.C.; Sousa, J.J.S.; Pais, A.A.C.C.; Cardoso, O.; Murtinho, D.; Serra, M.E.S.; Tewes, F.; Olivier, J.C. Optimization of levofloxacin-loaded crosslinked chitosan microspheres for inhaled aerosol therapy. Eur. J. Pharm. Biopharm. 2015, 96, 65–75.
|
[10] |
Park, J.H.; Jin, H.E.; Kim, D.D.; Chung, S.J.; Shim, W.S.; Shim, C.K. Chitosan microspheres as an alveolar macrophage delivery system of ofloxacin via pulmonary inhalation. Int. J. Pharm. 2013, 441, 562–569.
|
[11] |
Saraogi, G.K.; Gupta, P.; Gupta, U.D.; Jain, N.K.; Agrawal, G.P. Gelatin nanocarriers as potential vectors for effective management of tuberculosis. Int. J. Pharm. 2010, 385, 143–149.
|
[12] |
Yamada, K.; Kamada, N.; Odomi, M.; Okada, N.; Nabe, T.; Fujita, T.; Kohno, S.; Yamamoto, A. Carrageenans can regulate the pulmonary absorption of antiasthmatic drugs and their retention in the rat lung tissues without any membrane damage. Int. J. Pharm. 2005, 293, 63–72.
|
[13] |
Athamneh, T.; Amin, A.; Benke, E.; Ambrus, R.; Leopold, C.S.; Gurikov, P.; Smirnova, I. Alginate and hybrid alginate-hyaluronic acid aerogel microspheres as potential carrier for pulmonary drug delivery. J. Supercrit. Fluids. 2019, 150, 49–55.
|
[14] |
Diab, R.; Brillault, J.; Bardy, A.; Gontijo, A.V.L.; Olivier, J.C. Formulation and in vitro characterization of inhalable polyvinyl alcohol-free rifampicin-loaded PLGA microspheres prepared with sucrose palmitate as stabilizer: Efficiency for ex vivo alveolar macrophage targeting. Int. J. Pharm. 2012, 436, 833–839.
|
[15] |
Doan, T.V.P.; Couet, W.; Olivier, J.C. Formulation and in vitro characterization of inhalable rifampicin-loaded PLGA microspheres for sustained lung delivery. Int. J. Pharm. 2011, 414, 112–117.
|
[16] |
Ohashi, K.; Kabasawa, T.; Ozeki, T.; Okada, H. One-step preparation of rifampicin/poly(lactic-co-glycolic acid) nanoparticle-containing mannitol microspheres using a four-fluid nozzle spray drier for inhalation therapy of tuberculosis. J. Control. Release. 2009, 135, 19–24.
|
[17] |
Rawat, A.; Majumder, Q.H.; Ahsan, F. Inhalable large porous microspheres of low molecular weight heparin: In vitro and in vivo evaluation. J. Control. Release. 2008, 128, 224–232.
|
[18] |
Silva, D.M.; Paleco, R.; Traini, D.; Sencadas, V. Development of ciprofloxacin-loaded poly(vinyl alcohol) dry powder formulations for lung delivery. Int. J. Pharm. 2018, 547, 114–121.
|
[19] |
Gaspar, M.C.; Pais, A.A.C.C.; Sousa, J.J.S.; Brillaut, J.; Olivier, J.C. Development of levofloxacin-loaded PLGA microspheres of suitable properties for sustained pulmonary release. Int. J. Pharm. 2019, 556, 117–124.
|
[20] |
Kapoor, D.N.; Bhatia, A.; Kaur, R.; Sharma, R.; Kaur, G.; Dhawan, S. PLGA: a unique polymer for drug delivery. Ther. Deliv. 2015, 6, 41–58.
|
[21] |
Huang, H.; Wang, Y.X.; Jiang, C.G.; Lang, L.W.; Wang, H.Y.; Chen, Y.; Zhao, Y.; Xu, Z.J. Intrapulmonary concentration of levofloxacin in patients with idiopathic pulmonary fibrosis. Pulm. Pharmacol. Ther. 2014, 28, 49–52.
|
[22] |
Govender, T.; Stolnik, S.; Garnett, M.C.; Illum, L.; Davis, S.S. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J. Control. Release. 1999, 57, 171–185.
|
[23] |
Disratthakit, A.; Doi, N.; Takenaga, M.; Ohta, Y. Anti-tuberculosis activity and drug interaction with nevirapine of inhalable lipid microspheres containing rifampicin in murine model. J. Microencapsul. 2010, 27, 365–371.
|
[24] |
Mura, S.; Hillaireau, H.; Nicolas, J.; Kerdine-Römer, S.; Le Droumaguet, B.; Deloménie, C.; Nicolas, V.; Pallardy, M.; Tsapis, N.; Fattal, E. Biodegradable nanoparticles meet the bronchial airway barrier: how surface properties affect their interaction with mucus and epithelial cells. Biomacromolecules. 2011, 12, 4136–4143.
|
[25] |
Bianco, I.D.; Balsinde, J.; Beltramo, D.M.; Castagna, L.F.; Landa, C.A.; Dennis, E.A. Chitosan-induced phospholipase A2 activation and arachidonic acid mobilization in P388D1 macrophages. FEBS Lett. 2000, 466, 292–294.
|
[26] |
Ventura, C.A.; Tommasini, S.; Crupi, E.; Giannone, I.; Cardile, V.; Musumeci, T.; Puglisi, G. Chitosan microspheres for intrapulmonary administration of moxifloxacin: Interaction with biomembrane models and in vitro permeation studies. Eur. J. Pharm. Biopharm. 2008, 68, 235–244.
|
[27] |
Giovagnoli, S.; Blasi, P.; Schoubben, A.; Rossi, C.; Ricci, M. Preparation of large porous biodegradable microspheres by using a simple double-emulsion method for capreomycin sulfate pulmonary delivery. Int. J. Pharm. 2007, 333, 103–111.
|
[28] |
Sakagami, M.; Kinoshita, W.; Sakon, K.; Sato, J.I.; Makino, Y. Mucoadhesive beclomethasone microspheres for powder inhalation: their pharmacokinetics and pharmacodynamics evaluation. J. Control. Release. 2002, 80, 207–218.
|
[29] |
Rodrigues, S.; Cordeiro, C.; Seijo, B.; Remuñán-López, C.; Grenha, A. Hybrid nanosystems based on natural polymers as protein carriers for respiratory delivery: Stability and toxicological evaluation. Carbohydr. Polym. 2015, 123, 369–380.
|
[30] |
Varshosaz, J.; Taymouri, S.; Hamishehkar, H. Fabrication of polymeric nanoparticles of poly(ethylene-co-vinyl acetate) coated with chitosan for pulmonary delivery of carvedilol. J. Appl. Polym. Sci. 2014, 131, 39694.
|
[31] |
Du, P.; Du, J.; Smyth, H.D.C. Evaluation of granulated lactose as a carrier for dry powder inhaler formulations 2: effect of drugs and drug loading. J. Pharm. Sci. 2017, 106, 366–376.
|
[32] |
Feng, R.H.; Zhang, Z.Y.; Li, Z.W.; Huang, G.H. Preparation and in vitro evaluation of etoposide-loaded PLGA microspheres for pulmonary drug delivery. Drug Deliv. 2014, 21, 185–192.
|
[33] |
Wanakule, P.; Liu, G.W.; Fleury, A.T.; Roy, K. Nano-inside-micro: Disease-responsive microgels with encapsulated nanoparticles for intracellular drug delivery to the deep lung. J. Control. Release. 2012, 162, 429–437.
|
[34] |
Kolesnyk, I.; National University of Kiev Mohyla Academy Skovoroda str Kiev Ukraine, Konovalova, V.; Burban, A.; National University of Kiev Mohyla Academy Skovoroda str Kiev Ukraine, National University of Kiev Mohyla Academy Skovoroda str Kiev Ukraine. Alginate/κ-carrageenan microspheres and their application for protein drugs controlled release. Chem. Chem. Technol. 2015, 9, 485–492.
|
[35] |
Hwang, S.M.; Kim, D.D.; Chung, S.J.; Shim, C.K. Delivery of ofloxacin to the lung and alveolar macrophages via hyaluronan microspheres for the treatment of tuberculosis. J. Control. Release. 2008, 129, 100–106.
|
[36] |
Sah, E.; Sah, H. Recent trends in preparation of poly(lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent. J. Nanomater. 2015, 2015, 1–22.
|
[37] |
Luinstra, M.; Grasmeijer, F.; Hagedoorn, P.; Moes, J.R.; Frijlink, H.W.; de Boer, A.H. A levodopa dry powder inhaler for the treatment of Parkinson's disease patients in off periods. Eur. J. Pharm. Biopharm. 2015, 97, 22–29.
|
[38] |
Lakio, S.; Morton, D.A.V.; Ralph, A.P.; Lambert, P. Optimizing aerosolization of a high-dose L-arginine powder for pulmonary delivery. Asian J. Pharm. Sci. 2015, 10, 528–540.
|
[1] | Wenjing Ta, Ruochen Hua, Xingyue Li, Jihong Song, Wen Lu. In vitro blood-brain barrier models from different species: an overview on permeability associated with drug delivery [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 237-249. |
[2] | Kai Li, Bingjie Tang, Xinlong Chai, Yang Ping, Lihong Wang, Jin Su. Sialic acid-functionalized targeted drug delivery systems: advances in tumor and inflammation therapy by binding to Siglecs or selectin receptors [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(10): 773-795. |
[3] | Jinglei Wang, Ke Song, Hao Pan, Yang Liu, Dazhuang Wang, Lijian Chen. Nanomedicine for tumor therapy-current status and challenges [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(5): 359-380. |
[4] | State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center. Professor Yiguang Wang and his team developed a novel nano-delivery strategy for programmed regulation of tumor and lymph node immune microenvironment [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(5): 451-452. |
[5] | Kaisen Li, Rudong Wang, Yiwei Peng, Dawen Dong, Xianrong Qi. Riboflavin-modified lipo-polyplexes co-delivering CXCR4 siRNA and doxorubicin for treatment of highly metastatic cancer [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(3): 189-205. |
[6] | Dakuan Wang, Bo Peng, Mengmeng Qin, Minghui Li, Ge Song, Bing He, Hua Zhang, Wenbing Dai, Qiang Zhang, Xiangbao Meng, Huan Meng, Xueqing Wang. Integrated combination delivery of IDO inhibitor and paclitaxel for cancer treatment [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(1): 1-16. |
[7] | Qi Liu, Leqi Wang, Xinping Hu, Chuhang Zhou, Yingwei Tang, Yining Ma, Xiaoxiao Wang, Yan Liu. Fabrication of deoxycholic acid-modified polymeric micelles and their transmembrane transport [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(1): 17-26. |
[8] | Chuhang Zhou, Xinping Hu, Qi Liu, Leqi Wang, Yuanhang Zhou, Yao Jin, Yan Liu. Enhanced tumor-targeted delivery of anticancer drugs by folic acid-conjugated pH-sensitive polymeric micelles [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(9): 626-636. |
[9] | School of Pharmaceutical Sciences, Peking University Health Science Center. The team of Professor Qiang Zhang has made a series of progress in the field of targeted drug delivery in 2020 [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(9): 675-678. |
[10] | Meng Lei, Xueyuan Wang, Hang Miao, Jia Wang, Sijia Sha, Jiang Zhu, Yongqiang Zhu. Co-delivery of paclitaxel and gemcitabine via folic acid-conjugated polymeric multi-drug nanoparticles (FA-PMDNPs) for the treatment of breast cancer [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(10): 701-710. |
[11] | Yitian Du, Lu Zhang, Yin Zhan, Xinyu Chai, Kaisen Li, Xianrong Qi. Interferon-liposomes prepared to make macroglia maintain M1 phenotype [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(7): 476-483. |
[12] | Yajie Yin, Xiaofei Zhang, Zheng Cui, Wei Qu, Bing He, Wenbing Dai, Hua Zhang, Xueqing Wang, Qiang Zhang. In vitro dissolution and oral bioavailability study of fenofibrate nanomatrix system prepared by hot-melt extrusion [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(5): 329-338. |
[13] | Piaopiao Li, Yi Yan, Haitao Zhang, Ru Wang, Huhu Han, Jiancheng Wang. Treatment of cervical cancer by siRNA-loaded chitosan-coated calcium phosphate nanoparticles [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(8): 517-529. |
[14] | Yi Yan, Shihe Cui, Jing Sun, Piaopiao Li, Haitao Zhang, Jiancheng Wang. Novel cationic lipid with reduction-responsive cleavable hydrophobic tail for siRNA delivery [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(6): 383-396. |
[15] | Yusheng Pei, Tong Cai, Guolai Zhang, Chen Chen, Hua Gao. Detection of bacterial endotoxin in paclitaxel liposome [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(6): 436-441. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||