[1] Castanotto, D.; Rossi, J.J. The promises and pitfalls of RNA-interference-based therapeutics. Nature. 2009, 457, 426-433.
[2] Meister, G.; Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature. 2004, 431, 343-349.
[3] Dowdy, S.F. Overcoming cellular barriers for RNA therapeutics. Nat. Biotechnol. 2017, 3, 222-229.
[4] Ozcan, G.; Ozpolat, B.; Coleman, R.L.; Anil, S.; Berestein, G. Preclinical and clinical development of siRNA-based therapeutics. Adv. Drug Delive. Rev. 2015, 87, 108-119.
[5] Zuckerman, J.E.; Davis, M.E. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat. Rev. Drug Discov. 2015, 14, 843-856.
[6] Lin, Q.; Chen, J.; Zhang, Z.; Zheng, G. Lipid-based nanoparticles in the systemic delivery of siRNA. Nanomedicine-UK. 2014, 9, 105-120.
[7] Ozpolat, B.; Sood, A.K.; Lopez-Berestein, G. Liposomal siRNA nanocarriers for cancer therapy. Adv. Dru. Delive. Rev. 2014, 66, 110-116.
[8] TsengY, C.; Mozumdar, S.; Huang, L. Lipid-based systemic delivery of siRNA. Adv. Drug Delive. Rev. 2009, 9, 721-731.
[9] Majzoub, R.N.; Ewert, K.K.; Safinya, C.R. Cationic liposome-nucleic acid nanoparticle assemblies with applications in gene delivery and gene silencing. Philos. Transact. Ser. A Math. Phys. Eng. Sci. 2016, 2072, 1-14.
[10] Semple, S.C.; Akinc, A.; Chen, J.; Sandhu, A.P.; Mui, B.L.; Cho, C.K.; Sah, D.W.; Stebbing, D.; Crosley, E.J.; Yaworski, E.D.; Hafez, I.M.; Dorkin, J.R.; Qin, J.; Lam, K.; Rajeev, K.G.; Wong, K.F.; Jeffs, L.B.; Nechev, L.; Eisenhardt, M.L.; Jayaraman, M.; Kazem, M.; Maier, M.A.; Srinivasulu, M.; Weinstein, M.J.; Chen, Q.; Alvarez, R.; Barros, S.A.; De, S.; Klimuk, S.K.; Borland, T.; Kosovrasti,V.; Cantley, W.L.; Tam, Y.K.; Manoharan, M.; Ciufolini, M.A.; Tracy, M.A.; Fougerolles, A.; MacLachlan, I.; Cullis, P.R.; Madden, T.D.; Hope, M.J. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 2010, 28, 172-178.
[11] Jayaraman, M.; Ansell, S.M.; Mui, B.L.; Tam, Y.K.; Chen, J.X.; Du, X.J.; Butler, D.B.; Eltepu, L.; Matsuda, S.; Narayanannair, J.K.; Rajeev, K.G.; Hafez, I.M.; Akinc, A.; Maier, M.A.; Tracy, M.A.; Cullis, P.R.; Madden, T.D.; Manoharan, M.; Hope, M.J. Maximizing the Potency of siRNA Lipid Nanoparticles for Hepatic Gene Silencing in vivo. Angew. Chem. Int. Ed. Engl. 2012, 1, 8529-8533.
[12] Zhang, S.; Zhao, B.; Jiang, H.; Wang, B.; Ma, B.C. Cationic lipids and polymers mediated vectors for delivery of siRNA. J. Controlled Release. 2007, 123, 1-10.
[13] Rehman, Z.U.; Zuhorn, I.S.; Hoekstra, D. How cationic lipids transfer nucleic acids into cells and across cellular membranes: Recent advances. J. Controlled Release. 2013, 166, 46-56.
[14] Lv, H.; Zhang, S.; Wang, B.; Cui, S.H.; Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Controlled Release. 2006, 114, 100-109.
[15] Obata, Y.; Tajima, S.; Takeoka, S. Evaluation of pH-responsive liposomes containing amino acid-based zwitterionic lipids for improving intracellular drug delivery in vitro and in vivo. J. Controlled Release. 2010, 142, 267-276.
[16] Obata, Y.; Suzuki, D.; Takeoka, S. Evaluation of Cationic Assemblies Constructed with Amino Acid Based Lipids for Plasmid DNA Delivery. Bioconjug. Chem. 2008, 19, 1055-1063.
[17] Zheng, Y.; Guo, Y.G.; Li, Y.T.; Wu, Y.; Zhang, L.H.; Yang, Z.J. A novel gemini-like cationic lipid for the efficient delivery of siRNA. New J. Chem. 2014, 38, 4952-4962.
[18] Wang, B.; Yi, W.J.; Zhang, J.; Zhang, Q.F.; Xun, M.M.; Yu, X.Q. TACN-based cationic lipids with amino acid backbone and double tails: materials for non-viral gene delivery. Bioorg Med. Chem. Lett. 2014, 24, 1771-1775.
[19] Ma, X.F.; Sun, J.; Qiu, C.; Wu, Y.F.; Yu, M.Z.; Pei, X.W.; Wei, L.; Niu, Y.J.; Pang, W.H.; Yang, Z.J.; Wang, J.C.; Zhang, Q. The role of disulfide-bridge on the activities of H-shape gemini-like cationic lipid based siRNA delivery. J. Controlled Release. 2016, 235, 99-111.
[20] Breunig, M.; Hozsa, C.; Lungwitz, U.; Kazuo, W.; Umeda, I.; Kato, H.; Goepferich, A. Mechanistic investigation of poly(ethylene imine)-based siRNA delivery: Disulfide bonds boost intracellular release of the cargo. J. Controlled Release. 2008, 130, 57-63.
[21] Darpolor, M.M.; Basu, S.S.; Worth, A.; Nelson, D.; Clarke-Katzengerg, R.H.; Glickson, J.D.; Kaplan, D.E.; Blair, L.A. The aspartate metabolism pathway is differentiable in human hepatocellular carcinoma: transcriptomics and 13C-isotope based metabolomics. NMR. Biomed. 2014, 27, 381-389.
[22] Sivashanmugam, M.; Umashankar, J.V.; Sulochana, K.N. Ornithine and its role in metabolic diseases: An appraisal. Biomed. Pharmacother. 2017, 86, 185-194.
[23] Hiraishi, T. Poly(aspartic acid) (PAA) hydrolases and PAA biodegradation: current knowledge and impact on applications. Appl. Microbiol. Biotechnol. 2016, 100, 1623-1630.
[24] Son, S.; Ran, N.; Kim, J.; Singha, K.; Kim, W.J. Bioreducible Polymers for Gene Silencing and Delivery. Accounts. Chem. Res. 2012, 45, 1100-1122.
[25] Saito, G.; Swanson, J.A.; Lee, K.D. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv. Drug Delive. Rev. 2003, 55, 199-215.
[26] Yin, T.; Wang, L.; Yin, L.; Jianpin, Z.; Meirong, H. Co-delivery of hydrophobic paclitaxel and hydrophilic AURKA specific siRNA by redox-sensitive micelles for effective treatment of breast cancer. Biomaterials. 2015, 61, 10-25.
[27] Schafer, F.Q.; Buettner, G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biology & Medicine. 2001, 30, 1191-1210.
[28] Nicholson, R.I.; Gee, J.M.; Harper, M.E. EGFR and cancer prognosis. Eur. J. Cancer. 2001, 37, S9-S15.
[29] Varkouhi, A.K.; Scholte, M.; Storm, G.; Haisma, H. Endosomal escape pathways for delivery of biologicals. J. Controlled Release. 2011, 151, 220-228.
[30] Wattiaux, R.; Laurent, N.; Wattiaux-De, C.S.; Jadot, M. Endosomes, lysosomes: their implication in gene transfer. Adv. Drug Delive. Rev. 2000, 41, 201-208.
[31] Juliano, R.L.; Carver, K. Cellular uptake and intracellular trafficking of oligonucleotides. Adv. Drug Delive. Rev. 2015, 87, 35-45. |