Journal of Chinese Pharmaceutical Sciences ›› 2021, Vol. 30 ›› Issue (7): 556-569.DOI: 10.5246/jcps.2021.07.044
• Original articles • Previous Articles Next Articles
Cheng Li1, Yuhua Zhu1, Xiaomin Sun1, Jing Xu1, Dan Xiong1, Juan Wang1, Xinlu Gao1, Xulong Chen1,2,*()
Received:
2021-02-16
Revised:
2021-04-15
Accepted:
2021-04-25
Online:
2021-07-27
Published:
2021-07-27
Contact:
Xulong Chen
Supporting:
Cheng Li, Yuhua Zhu, Xiaomin Sun, Jing Xu, Dan Xiong, Juan Wang, Xinlu Gao, Xulong Chen. The multiple mechanisms of tripterygium wilfordii-induced acute kidney injury based on network pharmacology and molecular docking[J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(7): 556-569.
[1] |
Jiang, L.; Zhu, Y.; Luo, X.; Wen, Y.; Du, B.; Wang, M.; Zhao, Z.; Yin, Y.; Zhu, B.; Xi, X.; Beijing Acute Kidney Injury Trial (BAKIT) workgroup Epidemiology of acute kidney injury in intensive care units in Beijing: the multi-center BAKIT study. BMC Nephrol. 2019, 20, 468.
|
[2] |
Ikizler, T.A.; Parikh, C.R.; Himmelfarb, J.; Chinchilli, V.M.; Liu, K.D.; Coca, S.G.; Garg, A.X.; Hsu, C.Y.; Siew, E.D.; Wurfel, M.M.; Ware, L.B.; Faulkner, G.B.; Tan, T.C.; Kaufman, J.S.; Kimmel, P.L.; Go, A.S. A prospective cohort study of acute kidney injury and kidney outcomes, cardiovascular events, and death. Kidney Int. 2021, 99, 456–465.
|
[3] |
Garwood, S. Cardiac surgery-associated acute renal injury: new paradigms and innovative therapies. J. Cardiothorac. Vasc. Anesth. 2010, 24, 990–1001.
|
[4] |
Han, Y.F.; Guo, Q.; Mai, S.Z.; Wang, L.C.; Xu, M.; Tan, G.Z. Acute renal injury induced by oral valacyclovir. Eur. J. Dermatol. 2018, 28, 122–123.
|
[5] |
Almutairy, R.; Aljrarri, W.; Noor, A.; Elsamadisi, P.; Shamas, N.; Qureshi, M.; Ismail, S. Impact of colistin dosing on the incidence of nephrotoxicity in a tertiary care hospital in Saudi Arabia. Antibiotics. 2020, 9, 485.
|
[6] |
Feng, X.; Fang, S.N.; Gao, Y.X.; Liu, J.P.; Chen, W. Current research situation of nephrotoxicity of Chinese herbal medicine. China J. Chin. Mater. Med. 2018, 43, 417–424.
|
[7] |
He, T.M.; Zhang, J.Y.; Li, X.F. Application progress on metabolomics in nephrotoxicity of Chinese materiamedica. Chin. Tradit. Herbal. Drugs. 2019, 50, 3962–3970.
|
[8] |
Chen, J.Y.; Yang, Y.F.; Wei, X.P.; Chu, J.Z.; Jin, L. Analysis and countermeasures on safety factors of clinic use for Chinese patent medicine containing nephrotoxic ingredients. Chin. J. Tradit. Chin. Med. Pharm. 2017, 32, 1449–1451.
|
[9] |
Jiang, M.; Zhang H.B.; Ding Y. Research progress on pharmacological activities and clinical applications of tripterygium glycosides. Chin. Archi. Tradit. Chin. Med. 2020. This article can be found online at http://fffg208e51c2dd88406685526280e50de659hnfkck5vvwox56q0w.fgfy.jxjjxy.cwkeji.cn/kcms/detail/21.1546.R. 20200817.1322.196.html.
|
[10] |
Perazella, M.A. Drug-induced acute kidney injury: diverse mechanisms of tubular injury. Curr. Opin. Crit. Care. 2019, 25, 550–557.
|
[11] |
Feng, X.; Fang, S.N.; Gao, Y.X.; Liu, J.P.; Chen, W. Application of evidence-based rapid review in studying nephrotoxicity of TW preparation. China J. Chin. Mater. Med. 2018, 43, 440–445.
|
[12] |
Hao, J.X.; Gao, Z.S.; Gao,H.; Bi, K.S.; Wang, J.; Li, Z. Study on Mechanism of Nephrotoxicity of Tripterygii Radix Based on Network Pharmacology. Chin. J. ETMF. 2019, 25, 142–151.
|
[13] |
Xing, X.R.; Lu, D.Y.; Chai, Y.F.; Zhu, Z.Y. Advances in the mechanism of Traditional Chinese Medicine by network pharmacology method. J. Pharm. Practice. 2018, 36, 97–102.
|
[14] |
Huang, X.F.; Cheng, W.B.; Jiang, Y.; Liu, Q.; Liu, X.H.; Xu, W.F.; Huang, H.T. A network pharmacology-based strategy for predicting anti-inflammatory targets of ephedra in treating asthma. Int. Immunopharmacol. 2020, 83, 106423.
|
[15] |
Chung, W.T.; Choe, J.Y.; Jang, W.C.; Park, S.M.; Ahn, Y.C.; Yoon, I.K.; Kim, T.H.; Nam, Y.H.; Park, S.H.; Lee, S.W.; Kim, S.K. Polymorphisms of tumor necrosis factor-α promoter region for susceptibility to HLA-B27-positive ankylosing spondylitis in Korean population. Rheumatol. Int. 2011, 31, 1167–1175.
|
[16] |
Bayley, J.P.; Ottenhoff, T.H.; Verweij, C.L. Is there a future for TNF promoter polymorphisms? Genes. Immun. 2004, 5, 315–329.
|
[17] |
Hashad, D.I.; Elsayed, E.T.; Helmy, T.A.; Elawady, S.M. Study of the role of tumor necrosis factor-α (-308 G/A) and interleukin-10 (-1082 G/A) polymorphisms as potential risk factors to acute kidney injury in patients with severe sepsis using high-resolution melting curve analysis. Ren. Fail. 2017, 39, 77–82.
|
[18] |
Wang, Y.; Zhang, H.Y.; Chen, Q.; Jiao, F.Z.; Shi, C.X.; Pei, M.H.; Lv, J.; Zhang, H.; Wang, L.W.; Gong, Z.J. TNF-α/HMGB1 inflammation signalling pathway regulates pyroptosis during liver failure and acute kidney injury. Cell Prolif. 2020, DOI:10.1111/cpr.12829.
|
[19] |
Zelová, H.; Hošek, J. TNF-α signalling and inflammation: interactions between old acquaintances. Inflamm. Res. 2013, 62, 641–651.
|
[20] |
Zhang, Y.P.; Chen, Y.E.; Li, B.X.; Ding, P.; Jin, D.X.; Hou, S.Z.; Cai, X.C.; Sheng, X.J. The effect of monotropein on alleviating cisplatin-induced acute kidney injury by inhibiting oxidative damage, inflammation and apoptosis. Biomed. Pharmacother. 2020, 129, 110408.
|
[21] |
Brandenburger, T.; Salgado Somoza, A.; Devaux, Y.; Lorenzen, J.M. Noncoding RNAs in acute kidney injury. Kidney Int. 2018, 94, 870–881.
|
[22] |
Lee, S.H.; Lee, H.S.; Park, G.; Oh, S.M.; Oh, D.S. Dual actions on gout flare and acute kidney injury along with enhanced renal transporter activities by Yokuininto, a Kampo medicine. BMC Complementary Altern. Med. 2019, 19, 1–9.
|
[23] |
Liu, L.L.; Li, D.H.; He, Y.L.; Zhou, Y.Z.; Gong, S.H.; Wu, L.Y.; Zhao, Y.Q.; Huang, X.; Zhao, T.; Xu, L.; Wu, K.W.; Li, M.G.; Zhu, L.L.; Fan, M. miR-210 protects renal cell against hypoxia-induced apoptosis by targeting HIF-1 alpha. Mol. Med. 2017, 23, 258–271.
|
[24] |
Li, D.; An, N. Mechaism of R-214-mediated HIF1α and KIMI signaling pathway in rat with ischemic acute kidney injury. J. Hainan. Med. Univ. 2019, 25, 1847–1851.
|
[25] |
Han, X.; Sun, S.; Zhao, M.; Cheng, X.; Chen, G.; Lin, S.; Guan, Y.; Yu, X. Celastrol stimulates hypoxia-inducible factor-1 activity in tumor cells by initiating the ROS/Akt/p70S6K signaling pathway and enhancing hypoxia-inducible factor-1α protein synthesis. PLoS One. 2014, 9, e112470.
|
[26] |
Turner, R.J.; Eikmans, M.; Bajema, I.M.; Bruijn, J.A.; Baelde, H.J. Stability and species specificity of renal VEGF-A splicing patterns in kidney disease. PLoS One. 2016, 11, e0162166.
|
[27] |
Yang, L.L.; Zhan, Y.L. VEGF-A signaling pathway and glomerular filtration barrier. Chin. J. Integrated Tradit. West. Nephrology. 2011, 12, 931–933.
|
[28] |
Wu, B.N.; Chen, H.Y.; Liu, C.P.; Hsu, L.Y.; Chen, I.J. Kmup-1 inhibits H441 lung epithelial cell growth, migration and proinflammation VIA increased NO/CGMP and inhibited RHO KINASE/VEGF signaling pathways. Int. J. Immunopathol. Pharmacol. 2011, 24, 925–939.
|
[29] |
Sun, L.X.; Li, H.; Huang, X.; Wang, T.; Zhang, S.; Yang, J.; Huang, S.; Mei, H.F.; Jiang, Z.Z.; Zhang, L.Y. Triptolide alters barrier function in renal proximal tubular cells in rats. Toxicol. Lett. 2013, 223, 96–102.
|
[30] |
Shen, Q.Q.; Wang, J.J.; Roy, D.; Sun, L.X.; Jiang, Z.Z.; Zhang, L.Y.; Huang, X. Organic anion transporter 1 and 3 contribute to traditional Chinese medicine-induced nephrotoxicity. Chin. J. Nat. Med. 2020, 18, 196–205.
|
[31] |
Yang, F.; Ren, L.; Zhuo, L.; Liu, L. Role of apoptosis in triptolide-induced acute nephrotoxicity and possible mechanisms in rats. Chin. Tradit. Herbal. Drugs. 2011, 42, 923–928.
|
[32] |
Zhang, W.; Zhang, J.Q.; Meng, F.M.; Xue, F.S. Dexmedetomidine protects against lung ischemia-reperfusion injury by the PI3K/Akt/HIF-1α signaling pathway. J. Anesth. 2016, 30, 826–833.
|
[33] |
Chi,Y.; Ma, Q.; Ding, X.Q.; Qin,X.; Wang,C.; Zhang,J. Research on protective mechanism of ibuprofen in myocardial ischemia-reperfusion injury in rats through the PI3K/Akt/mTOR signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 4465–4473.
|
[34] |
Deng, X.B.; Rui, W.; Zhang, F.; Ding, W.J. PM2.5 induces Nrf2-mediated defense mechanisms against oxidative stress by activating PIK3/AKT signaling pathway in human lung alveolar epithelial A549 cells. Cell Biol. Toxicol. 2013, 29, 143–157.
|
[35] |
Bai, J.; Wu, Y.K.; Wu, K.M.; Zhu, H.L.; Li, N.; Chen, M.; Liu, L.X. Triptolide induces autophagy of ovarian granulosa cells via PI3K/AKT/m TOR pathway. Chin. J. Chin. Mater. Med. 2019, 44, 3429–3434.
|
[36] |
Li, H.L.; Wang, Y.Y.; Zhou, Z.Q.; Tian, F.; Yang, H.H.; Yan, J.Z. Combination of leflunomide and benazepril reduces renal injury of diabetic nephropathy rats and inhibits high-glucose induced cell apoptosis through regulation of NF-κB, TGF-β and TRPC6. Ren. Fail. 2019, 41, 899–906.
|
[37] |
Ren, Q.; Cen, G. D.; Gao, Y. X. Mechanism of TWP Inducing Apoptosis of Rat Kidney Cells Through NF-κB Signaling Pathway. J. Chengdu Univ. Tradit. Chin. Med. 2011, 34, 39–44.
|
[38] |
Zhu, H.; Sun, B.; Shen, Q. TNF-α induces apoptosis of human nucleus pulposus cells via activating the TRIM14/NF-κB signalling pathway. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3004–3012.
|
[39] |
Chen, X.; Yang, Y.L.; Li, W.H.; Liu, M.; Zhang, S.S.; Wang, Y.H.; Du, G.H. Esculin alleviates acute kidney injury and inflammation induced by LPS in mice and its possible mechanism. J. Chin. Pharm. Sci. 2020, 29, 322–332.
|
[40] |
Chang, L.J.; Li, Z.J.; Li, Q.; Sui, Z.Y.; Li, X.; Bi, K.S. Metabonomic analysis on serum in nephrotoxic rats induced by radix et rhizoma Tripterygii. Chin. J. Exp. Tradit. Med. Formulae. 2016, 22, 89–94.
|
[41] |
Meng, F.C.; Tang, L.D. Challenges and prospect in research of Chinese materiamedica network pharmacology. Chin. Tradit. Herbal. Drugs. 2020, 51, 2232–2237.
|
[1] | Mengyao Wu, Lu Liu, Peng Zhang, Lele Zhang, Yun Gong, Xiuwei Yang. Exploring the mechanism of Buxue Yimu Pills on postpartum abdominal pain through network pharmacology and experimental validation [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 691-703. |
[2] | Ping Shang, Lin Liu, Yi Fang. Investigating the mechanism of action of Gui Zhi Fu Ling Wan in the treatment of endometriosis based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 704-719. |
[3] | Gedi Zhang, Gengxin Liu, Ziyou Yan. Therapeutic efficacy evaluation and mechanism of action based on meta-analysis and network pharmacology of Li Chong Decoction (Bolus) for cancer treatment [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 720-735. |
[4] | Dongyan Wu, Xiaodan Wang, Jinmiao Chai, Qinqing Li, Yue Li, Mei Bi, Wanwei Gui, Huimin Cao. Study on the mechanism of Danggui Buxue decoction in the treatment of diabetic retinopathy based on network pharmacology and experiment [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 527-538. |
[5] | Huan Yan, Jian Wang, Hao Fu, Min Yang, Miao Qu, Zhie Fang. Discussion on the potential target and mechanism of Dachaihu Decoction in treating hyperlipidemia based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(6): 446-459. |
[6] | Mengya Wang, Kuanyou Zhang, Xin Chen, Hao Fu, Shouchun Peng. Study on the mechanism of Rhinoceros Horn and Rehmannia Decoction in the treatment of systemic lupus erythematosus based on the method of network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 351-359. |
[7] | Guangzhi Shen, Xingang Cui, Zhimin Na, Yulong Zou, Guihua Zou. A network pharmacology approach to explore the pharmacological mechanism of Epimedium brevicornum in sexual dysfunction [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 379-391. |
[8] | Min Ao, Minglan Bao, Yaxing Hou, Ying Yue, Huifang Li, Guohua Wu, Su Ri Ga La Tu. Study on the mechanism of Mongolian medicine Herba Lomatognii against acute liver injury based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 268-282. |
[9] | Yajing Li, Yawen Bai, Yu Du, Changhong Yan, Chunjie Ma, Lining Sun, Fengyue Bu, Haoyang Yan. Yu Ping Feng Powder for chronic glomerulonephritis treatment: A meta-analysis and network pharmacology study [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(12): 1006-1026. |
[10] | Zhiyong Sun, Shuli Gao, Yang Zhang, Gangqiang Xue, Zilin Yuan, Shaonan Wang. Study on the potential mechanism of Pu Gong Ying in treating breast hyperplasia based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 893-910. |
[11] | Yuqian Zhang, Haiying Niu, Yiran Jin. Network pharmacology-based strategy to investigate anticancer mechanisms of Catharanthus roseus (L.) G. Don [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 911-922. |
[12] | Daiying Zhou, Jing Chen, Zhigang Lv. Network pharmacology prediction and molecular docking-based study on the mechanism of Erigeron breviscapus in the treatment of age-related macular degeneratio [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 923-934. |
[13] | Dongsheng Wei, Xiaosheng Liu, Luzhen Li, Jiajie Qi, Yuxuan Wang, Zhe Zhang. Unraveling the biological and immunological mechanisms of safflower-danshen in the treatment of coronary atherosclerotic heart disease: a comprehensive bioinformatics and single-cell sequencing approach [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(10): 796-812. |
[14] | Ning Ding, Tao Zhang, Ji Luo, Haochen Liu, Yu Deng, Yongheng He. Study on the mechanism of Baishao Qiwu Decoction in the treatment of colorectal cancer based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(1): 17-31. |
[15] | Ipargul Hafiz, Zhaozhi Wang, Hongji He, Zhezhe Li, Mei Wang. Exploring the mechanism of Peganum harmala L. seeds on hepatocellular carcinoma based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(7): 517-529. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||