Journal of Chinese Pharmaceutical Sciences ›› 2025, Vol. 34 ›› Issue (9): 821-830.DOI: 10.5246/jcps.2025.09.060
• Original articles • Previous Articles Next Articles
Received:
2025-03-15
Revised:
2025-04-10
Accepted:
2025-04-23
Online:
2025-10-02
Published:
2025-10-02
Contact:
Feiwei Zhang
Supporting:
Xifei Yang, Feiwei Zhang. Stability of aluminum hydroxide nanoparticle adjuvants during room temperature storage[J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(9): 821-830.
[1] |
Shirodkar, S.; Hutchinson, R.L.; Perry, D.L.; White, J.L.; Hem, S.L. Aluminum compounds used as adjuvants in vaccines. Pharm. Res. 1990, 7, 1282–1288.
|
[2] |
Kuroda, E.; Coban, C.; Ishii, K.J. Particulate adjuvant and innate immunity: past achievements, present findings, and future prospects. Int. Rev. Immunol. 2013, 32, 209–220.
|
[3] |
Marrack, P.; McKee, A.S.; Munks, M.W. Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol. 2009, 9, 287–293.
|
[4] |
Johnston, C.T.; Wang, S.L.; Hem, S.L. Measuring the surface area of aluminum hydroxide adjuvant. J. Pharm. Sci. 2002, 91, 1702–1706.
|
[5] |
Wang, S.L.; Johnston, C.T.; Bish, D.L.; White, J.L.; Hem, S.L. Water-vapor adsorption and surface area measurement of poorly crystalline boehmite. J. Colloid Interface Sci. 2003, 260, 26–35.
|
[6] |
Lindblad, E.B. Aluminium adjuvants—in retrospect and prospect. Vaccine. 2004, 22, 3658–3668.
|
[7] |
Cocke, D.L.; Johnson, E.D.; Merrill, R.P. Planar models for alumina-based catalysts. Catal. Rev. 1984, 26, 163–231.
|
[8] |
Yang, X.F.; Hu, G.X.; Zhou, Y.; Huang, P.; Zhang, X.; Zhang, F.W. Feasibility study of ultrafiltration in the preparation of aluminum hydroxide adjuvant. Int. J. Biologics. 2024, 2, 99–103.
|
[9] |
Gupta, R.K.; Siber, G.R. Adjuvants for human vaccines: current status, problems and future prospects. Vaccine. 1995, 13, 1263–1276.
|
[10] |
Dixon, J.B.; Weed, S.B.; Dinauer, R.C. Minerals in Soil Environments. 2nd ed. Soil Science Society of America Book Series. 1989, 331–378.
|
[11] |
Prodromou, K.P.; Pavlatou-Ve, A.S. Formation of aluminum hydroxides as influenced by aluminum salts and bases. Clays Clay Miner. 1995, 43, 111–115.
|
[12] |
Yang, X.F.; Liu, S.X.; Hu, G.X.; Zhou, Y.; Huang, P.; Zhang, L.; Zhang, H.; Zhang, F.W. Effect of spray addition of ammonia on the quality consistency of aluminum hydroxide adjuvant. Int. J. Biologics. 2022, 45, 196–199.
|
[13] |
Li, X.R.; Aldayel, A.M.; Cui, Z.R. Aluminum hydroxide nanoparticles show a stronger vaccine adjuvant activity than traditional aluminum hydroxide microparticles. J. Control. Release. 2014, 173, 148–157.
|
[14] |
Morefield, G.L.; Sokolovska, A.; Jiang, D.P.; HogenEsch, H.; Robinson, J.P.; Hem, S.L. Role of aluminum-containing adjuvants in antigen internalization by dendritic cells in vitro. Vaccine. 2005, 23, 1588–1595
|
[15] |
Zeng, Y.; Zhou, W.K. Aluminum hydroxide nanoparticle adjuvants can reduce the inflammatory response more efficiently in a mouse model of allergic asthma than traditional aluminum hydroxide adjuvants. Exp. Ther. Med. 2023, 27, 39.
|
[16] |
Mbhele, Z.; Thwala, L.; Khoza, T.; Ramagoma, F. Evaluation of aluminium hydroxide nanoparticles as an efficient adjuvant to potentiate the immune response against Clostridium botulinum serotypes C and D toxoid vaccines. Vaccines. 2023, 11, 1473.
|
[17] |
Yau, K.P.; Schulze, D.G.; Johnston, C.T.; Hem, S.L. Aluminum hydroxide adjuvant produced under constant reactant concentration. J. Pharm. Sci. 2006, 95, 1822–1833.
|
[18] |
Dandashli, E.A.; Zhao, Q.J.; Yitta, S.; Morefield, G.L.; White, J.L.; Hem, S.L. Effect of thermal treatment during the preparation of aluminum hydroxide adjuvant on the protein adsorption capacity during aging. Pharm. Dev. Technol. 2002, 7, 401–406.
|
[19] |
Colaprico, A.; Senesi, S.; Ferlicca, F.; Brunelli, B.; Ugozzoli, M.; Pallaoro, M.; O’Hagan, D.T. Adsorption onto aluminum hydroxide adjuvant protects antigens from degradation. Vaccine. 2020, 38, 3600–3609.
|
[20] |
Clapp, T.; Siebert, P.; Chen, D.X.; Jones Braun, L. Vaccines with aluminum-containing adjuvants: optimizing vaccine efficacy and thermal stability. J. Pharm. Sci. 2011, 100, 388–401.
|
[21] |
Rinella, J.V.; White, J.L.; Hem, S.L. Effect of pH on the elution of model antigens from aluminum-containing adjuvants. J. Colloid Interface Sci. 1998, 205, 161–165.
|
[22] |
Burrell, L.S.; Lindblad, E.B.; White, J.L.; Hem, S.L. Stability of aluminium-containing adjuvants to autoclaving. Vaccine. 1999, 17, 2599–2603.
|
[23] |
Tettenhorst, R.; Hofmann, D.A. Crystal chemistry of boehmite. Clays Clay Miner. 1980, 28, 373–380.
|
[24] |
Duprez, J.; Kalbfleisch, K.; Deshmukh, S.; Payne, J.; Haer, M.; Williams, W.; Durowoju, I.; Kirkitadze, M. Structure and compositional analysis of aluminum oxyhydroxide adsorbed pertussis vaccine. Comput. Struct. Biotechnol. J. 2021, 19, 439–447.
|
[25] |
Mark, A.; Björkstén, B.; Granström, M. Immunoglobulin E responses to diphtheria and tetanus toxoids after booster with aluminium-adsorbed and fluid DT-vaccines. Vaccine. 1995, 13, 669–673.
|
[26] |
Wittayanukulluk, A.; Jiang, D.P.; Regnier, F.E.; Hem, S.L. Effect of microenvironment pH of aluminum hydroxide adjuvant on the chemical stability of adsorbed antigen. Vaccine. 2004, 22, 1172–1176.
|
[27] |
Li, D.D.; Xu, M.J.; Li, G.T.; Zheng, Y.; Zhang, Y.; Xia, D.D.; Wang, S.N.; Chen, Y. Mg/Al-LDH as a nano-adjuvant for pertussis vaccine: a evaluation compared with aluminum hydroxide adjuvant. Nanotechnology. 2022, 33, 235102.
|
[28] |
He, P.; Zou, Y.N.; Hu, Z.Y. Advances in aluminum hydroxide-based adjuvant research and its mechanism. Hum. Vaccin. Immunother. 2015, 11, 477–488.
|
[29] |
Jaldin-Fincati, J.; Moussaoui, S.; Gimenez, M.C.; Ho, C.Y.; Lancaster, C.E.; Botelho, R.; Ausar, F.; Brookes, R.; Terebiznik, M. Aluminum hydroxide adjuvant diverts the uptake and trafficking of genetically detoxified pertussis toxin to lysosomes in macrophages. Mol. Microbiol. 2022, 117, 1173–1195.
|
[1] | Datong Gao, Meng Lin, Yiwei Peng, Jiajia Li, Yiliang Yang, Yulu Teng, Siyu Chen, Wen Sun, Zinan Wu, Quan Yuan, Zhenzhen Yang, Yanxia Zhou, Xinru Li, Xianrong Qi. Polymer-lipid nanoparticles enhance liver-targeted delivery of therapeutic base editor plasmid for the treatment of hereditary tyrosinemia type 1 (HT-1) [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(3): 189-200. |
[2] | Revika Rachmaniar, Dolih Gozali, Camellia Panatarani, Wahyu Priyo Legowo, Sohadi Warya, Taofik Rusdiana. Solubility enhancement of ethyl p-methoxycinnamate under nanoscale confinement [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(6): 461-470. |
[3] | Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University Health Science Center. Professor Yiguang Wang and his team developed pH-Amplified CRET nanoparticles strategy for in vivo imaging of tumor metastatic lymph nodes [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(5): 449-450. |
[4] | Jian Zhang, Mengmeng Qin, Dan Yang, Wenbing Dai, Hua Zhang, Xueqing Wang, Bing He, Qiang Zhang. Proteomic analysis on cellular response induced by nanoparticles reveals the nano-trafficking pathway through epithelium [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(2): 107-118. |
[5] | Jingru Wang, Shuang Zhang, Zhuoyue Li, Meiqi Xu, Guangxue Wang, Xuan Zhang. Preparation and characterization of pH-sensitive calcium carbonate-chlorin e6 nanoparticles for photodynamic therapy [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(11): 904-911. |
[6] | Man Liu, Shuang Zhang, Zhuoyue Li, Guangxue Wang, Jingru Wang, Xuan Zhang. Preparation and characterization of zinc oxide nanoparticles [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(9): 617-625. |
[7] | Meng Lei, Xueyuan Wang, Hang Miao, Jia Wang, Sijia Sha, Jiang Zhu, Yongqiang Zhu. Co-delivery of paclitaxel and gemcitabine via folic acid-conjugated polymeric multi-drug nanoparticles (FA-PMDNPs) for the treatment of breast cancer [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(10): 701-710. |
[8] | Xueling Wang, Yanqin Liang, Yuan Zhang, Bing He, Wenbing Dai, Hua Zhang, Xueqing Wang, Qiang Zhang. Combination therapy of cRGD-DOX self-assembled nanoparticles and bevacizumab for breast cancer [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(9): 627-640. |
[9] | AnPu Yang, Bei Wei, Jiafang Song, Xiangfu Guo, Yuxi Cheng, Bing He, Hua Zhang, Xueqing Wang, Qiang Zhang. Construction of a Caco-2/EAhy926 cell tandem compound model and its application in mechanism study of nanoparticle transcytosis [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(7): 478-489. |
[10] | Shuai Meng, Wei Cui, Shaohui Lin, Guiling Wang, Yu Hei, Bo Deng, Shuang Ma, Zhan Zhang, Yingchun Liu, Ying Xie. Modeling the molecular interactions of budesonide with bovine serum albumin guides the rational preparation of nanoparticles for pulmonary delivery [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(6): 415-428. |
[11] | Yunqiang Deng, Yao Jin, Chuyu He, Yang Zou, Yuanhang Zhou, Shidi Han, Chuhang Zhou, Qi Liu, Xinru Li, Yanxia Zhou, Yan Liu . Preparation and characterization of intestine PepT1-targeted calcium carbonate nanoparticles [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(6): 397-407. |
[12] | Xin Li, Ning Pang, Ji Li, Xianrong Qi. Characterization of amphiphilic dendrimer modified PEG-PLA nanoparticles prepared by a double emulsion-solvent evaporation method [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(7): 521-527. |
[13] | Chong Qiu, Shihe Cui, Jing Sun, Jiancheng Wang. In vitro comparative evaluation of three CLD/siRNA nanoplexes prepared by different processes [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(9): 660-668. |
[14] | Mengmeng Qin, Yifan Li, Bing He, Bei Wei, Wenbing Dai, Hua Zhang, Xueqing Wang, Qiang Zhang. The adsorption of cellular proteins affects the uptake and cellular distribution of gold nanoparticles [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(9): 651-659. |
[15] | Wei Ren, Shuang Zhang, Ting Zhong, Dan Huang, Xin Yao, Yang Guo, Xiaochuan Duan, Yifan Yin, Shushi Zhang, Xuan Zhang. The preparation and characteristics of sterically stabilized liposomes containing paclitaxel and super-paramagnetic iron oxide nanoparticles [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(8): 570-575. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||