[1] Al Za’abi, M.; Al Busaidi, M.; Yasin, J.; Schupp, N.; Nemmar, A.; Ali, B.H. Development of a new model for the induction of chronic kidney disease via intraperitoneal adenine administration, and the effect of treatment with gum acacia thereon. Am. J. Transl. Res. 2015, 7, 28-38.
[2] Yokote, S.; Katsuoka, Y.; Yamada, A.; Ohkido, I.; Yokoo, T. Effect of adipose-derived mesenchymal stem cell transplantation on vascular calcification in rats with adenine-induced kidney disease. Sci. Rep. 2017, 7, e14036.
[3] Ali, B.H.; Cahliková, L.; Opletal, L.; Karaca, T.; Manoj, P.; Ramkumar, A.; Al Suleimani, Y.M.; Al Za’abi, M.; Nemmar, A.; Chocholousova-Havlikova, L.; Locarek, M.; Siatka, T.; Blunden, G. Effect of aqueous extract and anthocyanins of calyces of Hibiscus sabdariffa (Malvaceae) in rats with adenine-induced chronic kidney disease. J. Pharm. Pharmacol. 2017, 69, 1219-1229.
[4] Zhang, X.Y.; Yang, Z.N.; Li, L.F.; Qiao, Y.H.; Jiao, H.Y.; Miao, C.X. Prevention of injury by resveratrol in a rat model of adenine-induced chronic kidney disease. Trop. J. Pharm. Res. 2017, 16, 2027-2032.
[5] Diwan, V.; Brown, L.; Gobe, G.C. The flavonoid rutin improves kidney and heart structure and function in an adenine-induced rat model of chronic kidney disease. J. Functional Foods. 2017, 33, 85-93.
[6] Ali, B.H.; Al Za''abi, M.; Adham, S.A.; Yasin, J.; Nemmar, A.; Schupp, N. Therapeutic Effect of Chrysin on Adenine-Induced Chronic Kidney Disease in Rats. Cell. Physiol. Biochem. 2016, 38, 248-257.
[7] Akchurin, O.; Sureshbabu, A.; Doty, S.B.; Zhu, Y.S.; Patino, E.; Cunningham-Rundles, S.; Choi, M.E.; Boskey, A.; Rivella, S. Lack of hepcidin ameliorates anemia and improves growth in an adenine-induced mouse model of chronic kidney disease. Am. J. Physiol. Renal Physiol. 2016, 311, F877-F889.
[8] Diwan, V.; Brown, L.; Gobe, G.C. Adenine-induced chronic kidney disease in rats. Nephrology. 2018, 23, 5-11.
[9] Boon, A.C.; Lam, A.K.; Gopalan, V.; Benzie, I.F.; Briskey, D.; Coombes, J.S.; Fassett, R.G.; Bulmer, A.C. Endogenously elevated bilirubin modulates kidney function and protects from circulating oxidative stress in a rat model of adenine-induced kidney failure. Sci. Rep. 2015, 5, e15482.
[10] Franklin, B.S.; Mangan, M.S.; Latz, E. Crystal Formation in Inflammation. Annu. Rev. Immunol. 2016, 34, 173-202.
[11] Runolfsdottir, H.L.; Palsson, R.; Agustsdottir, I.M.; Indridason, O.S.; Edvardsson, V.O. Kidney disease in adenine phosphoribosyltransferase deficiency. Am. J. Kidney Dis. 2016, 67, 431-438.
[12] Al Za’abi, M.; Shalaby, A.; Manoj, P.; Ali, B.H. The in vivo effects of adenine-induced chronic kidney disease on some renal and hepatic function and CYP450 metabolizing enzymes. Physiol. Res. 2017, 66, 263-271.
[13] Zhu, C.Z.; Doyle, K.J.; Nikkel, A.L.; Olsen, L.; Namovic, M.T.; Salte, K.; Widomski, D.; Su, Z.; Donnelly-Roberts, D.L.; Gopalakrishnan, M.M.; McGaraughty, S. Short-term oral gavage administration of adenine induces a model of fibrotic kidney disease in rats. J. Pharmacol. Toxicol. Methods. 2018, 94, 34-43.
[14] Correa-Costa, M.; Braga, T.T.; Felizardo, R.J.; Andrade-Oliveira, V.; Perez, K.R.; Cuccovia, I.M.; Hiyane, M.I.; Da Silva, J.S.; Câmara, N.O. Macrophage trafficking as key mediator of adenine-induced kidney injury. Mediators. Inflamm. 2014, 2014, e291024.
[15] Nemmar, A.; Karaca, T.; Beegam, S.; Yuvaraju, P.; Yasin, J.; Ali, B.H. Lung oxidative stress, DNA damage, apoptosis, and fibrosis in adenine-induced chronic kidney disease in mice. Front. Physiol. 2017, 8, e896.
[16] Fong, D.; Ullah, M.M.; Lal, J.G.; Abdelkader, A.; Ow, C.P.; Hilliard, L.M.; Ricardo, S.D.; Kelly, D.J.; Evans, R.G. Renal cellular hypoxia in adenine-induced chronic kidney disease. Clin. Exp. Pharmacol. Physiol. 2016, 43, 896-905.
[17] He, M.; Ouyang, H.; He, M.; Tan, T.; Li, J.; Zhang, X.; Jia, J.; Feng, Y.; Yang, S. Application of a liquid chromatography-tandem mass spectrometry method to the pharmacokinetics, tissue distribution and excretion in the study of anemoside B4, a novel antiviral agent candidate, in rats. Biomed. Chromatogr. 2017, 31, e3914.
[18] Yang, L.R.; Meng, X.; Yu, X.J.; Kuang, H.X. Simultaneous determination of anemoside B4, phellodendrine, berberine, palmatine, obakunone, esculin, esculetin in rat plasma by UPLC-ESI-MS/MS and its application to a comparative pharmacokinetic study in normal and ulcerative colitis rats. J. Pharm. Biomed. Anal. 2017, 134, 43-52.
[19] Hu, H.H.; Chen, D.Q.; Wang, Y.N.; Feng, Y.L.; Cao, G.; Vaziri, N.D.; Zhao, Y.Y. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem. Biol. Interact. 2018, 292, 76-83.
[20] Gil, A.; Brod, V.; Awad, H.; Heyman, S.N.; Abassi, Z.; Frajewicki, V. Neutrophil gelatinase-associated lipocalin in a triphasic rat model of adenine-induced kidney injury. Ren. Failure. 2016, 38, 1448-1454.
[21] Yun, Y.; Gao, T.; Li, Y.; Gao, Z.; Duan, J.; Yin, H.; Duan, W. Excretory Function of Intestinal Tract Enhanced in Kidney Impaired Rats Caused by Adenine. Sci. World J. 2016, 2016, e2695718.
[22] Lu, X.; Yuan, Z.Y.; Yan, X.J.; Lei, F.; Jiang, J.F.; Yu, X.; Yang, X.W.; Xing, D.M.; Du, L.J. Effects of Angelica Dahurica on obesity and fatty liver in mice. Chin. J. Nat. Med. 2016, 14, 641-652.
[23] Yu, X.; Wang, X.P.; Lei, F.; Jiang, J.F.; Li, J.; Xing, D.M.; Du, L.J. Pomegranate leaf attenuates lipid absorption in the small intestine in hyperlipidemic mice by inhibiting lipase activity. Chin. J. Nat. Med. 2017, 15, 732-739.
[24] Wang, X.P.; Yu, X.; Yan, X.J.; Lei, F.; Chai, Y.S.; Jiang, J.F.; Yuan, Z.Y.; Xing, D.M.; Du, L.J. TRPM8 in the negative regulation of TNFα expression during cold stress. Sci. Rep. 2017, 7, e45155.
[25] Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44-57.
[26] Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucl. Acids Res. 2009, 37, 1-13.
[27] Hari, A.; Zhang, Y.F.; Tu, Z.Y.; Detampel, P.; Stenner, M.; Ganguly, A.; Shi, Y. Activation of NLRP3 inflammasome by crystalline structures via cell surface contact. Sci. Rep. 2014, 4, e7281.
[28] Davis, B.K.; Wen, H.T.; Ting, J.P. The Inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol. 2011, 29, 707-735.
[29] Shindo, T.; Doi, S.; Nakashima, A.; Sasaki, K.; Arihiro, K.; Masaki, T. TGF-β1 promotes expression of fibrosis-related genes through the induction of histone variant H3.3 and histone chaperone HIRA. Sci. Rep. 2018, 8, e14060.
[30] Isaka, Y. Targeting TGF-β signaling in kidney fibrosis. Inter. J. Mol. Sci. 2018, 19, e2532.
[31] Györfi, A.H.; Matei, A.E.; Distler, J.H.W. Targeting TGF-β signaling for the treatment of fibrosis. Matrix Biology. 2018, 68-69, 8-27. |