中国药学(英文版) ›› 2025, Vol. 34 ›› Issue (7): 605-621.DOI: 10.5246/jcps.2025.07.045
• 【研究论文】 • 下一篇
闫嘉1,2, 梁艳琴3,*(), 吴翠栓1,4, 张强1,2,*(
)
收稿日期:
2025-02-20
修回日期:
2025-04-11
接受日期:
2025-04-24
出版日期:
2025-07-31
发布日期:
2025-07-31
通讯作者:
梁艳琴, 张强
Jia Yan1,2, Yanqin Liang3,*(), Cuishuan Wu1,4, Qiang Zhang1,2,*(
)
Received:
2025-02-20
Revised:
2025-04-11
Accepted:
2025-04-24
Online:
2025-07-31
Published:
2025-07-31
Contact:
Yanqin Liang, Qiang Zhang
Supported by:
摘要:
硝苯地平是一种用于治疗高血压的药物, 需要长期使用。虽然其渗透泵制剂(如拜耳的Adalat®)因零级药物释放特性而广受认可, 但它对生产设备的严格要求使其成本高昂。本研究利用介孔二氧化硅作为硝苯地平的载体, 将其与有机聚合物结合, 形成有机-无机杂化纳米复合材料(OIN)。结果表明, OIN在体外和体内均表现出良好的缓释效果, 体外释放曲线呈现典型的一级药物释放特征。然后, 我们进一步将OIN与传统的片剂制备技术相结合, 开发出具有理想零级释放特性的口服纳米复合体系(ONS)。与拜耳公司的硝苯地平渗透泵制剂(Adalat®)相比, 不同时间点的累积释放度均显著相似。此外, 从理论上探讨了OIN和ONS的体外释放机制, 为缓释药物的研究提供了新的思路。
Supporting:
闫嘉, 梁艳琴, 吴翠栓, 张强. 口服硝苯地平有机-无机复合缓释材料的研制[J]. 中国药学(英文版), 2025, 34(7): 605-621.
Jia Yan, Yanqin Liang, Cuishuan Wu, Qiang Zhang. Development of an oral organic-inorganic hybrid nanocomposite for prolonged sustained release of nifedipine[J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(7): 605-621.
Figure 7. In vivo pharmacodynamic evaluation of NF and NF-S350-RS13 in SD rats. The results provided clear and intuitive evidence of the enhanced therapeutic efficacy achieved by our formulation in vivo.
Figure 8. In vitro dissolution profiles of various tablet formulations. (A) Comparison of dissolution results for three formulations containing different amounts of disintegrating agent; (B) Dissolution profiles of seven formulations incorporating the same dose of different sustained-release excipients; (C) Comparative analysis of Tablet A and Tablet B, both coated with identical coating materials; the data show that Tablet A with Coating 1 exhibits superior dissolution performance; (D) Comparison of the final selected formulation (ONS) with a commercially available reference product (Adalat®) in terms of in vitro dissolution behavior.
Table 5. Formulation design for sustained-release materials added in equal amounts based on Formula 3 in Table 4 (The names of the formulations were designated based on the names of the sustained-release materials added).
Scheme 1. Schematic illustration of the in vitro drug release mechanisms of the OIN and the ONS based on the final tablet formulation. α (red) represents the porous membrane formed by the swelling and partial dissolution of Eudragit® RSPO in the medium, while β (blue) denotes the gel layer generated by HPMC 1.5W upon hydration.
[1] |
Bikiaris, D.; Koutris, E.; Karavas, E. New aspects in sustained drug release formulations. Recent Pat. Drug Deliv. Formul. 2007, 1, 201–213.
|
[2] |
García, C.R.; Siqueiros, A.; Benet, L.Z. Oral controlled release preparations. Pharm. Acta Helv. 1978, 53, 99–109.
|
[3] |
Heller, J. Controlled release of biologically active compounds from bioerodible polymers. Biomaterials. 1980, 1, 51–57.
|
[4] |
Hanks, G.W.; Rose, N.M.; Aherne, G.W.; Piall, E.M. Controlled release morphine. Lancet. 1981, 1, 1104–1105.
|
[5] |
Nokhodchi, A.; Raja, S.; Patel, P.; Asare-Addo, K. The role of oral controlled release matrix tablets in drug delivery systems. Bioimpacts. 2012, 2, 175–187.
|
[6] |
Sousa, C.F.V.; Monteiro, L.P.G.; Rodrigues, J.M.M.; Borges, J.; Mano, J.F. Marine-origin polysaccharides-based free-standing multilayered membranes as sustainable nanoreservoirs for controlled drug delivery. J. Mater. Chem. B. 2023, 11, 6671–6684.
|
[7] |
Wang, Y.; Yu, D.G.; Liu, Y.; Liu, Y.N. Progress of electrospun nanofibrous carriers for modifications to drug release profiles. J. Funct. Biomater. 2022, 13, 289.
|
[8] |
Lin, W.; Li, Y.K.; Shi, Q.Z.; Liao, X.R.; Zeng, Y.; Tian, W.; Xie, X.Y.; Liu, H. Preparation and evaluation of bilayer-core osmotic pump tablets contained topiramate. PLoS One. 2022, 17, e0264457.
|
[9] |
Li, N.N.; Fan, L.; Wu, B.; Dai, G.L.; Jiang, C.J.; Guo, Y.; Wang, D.L. Preparation and in vitro/in vivo evaluation of azilsartan osmotic pump tablets based on the preformulation investigation. Drug Dev. Ind. Pharm. 2019, 45, 1079–1088.
|
[10] |
Chen, H.; Fang, D.Y.; Wang, X.Y.; Gong, Y.; Ji, Y.; Pan, H. Fabrication of osmotic pump tablets utilizing semisolid extrusion three-dimensional printing technology. Int. J. Pharm. 2024, 665, 124668.
|
[11] |
Zeng, Q.P.; Liu, Z.H.; Huang, A.W.; Zhang, J.; Song, H.T. Preparation and characterization of silymarin synchronized-release microporous osmotic pump tablets. Drug Des. Devel. Ther. 2016, 10, 519–531.
|
[12] |
Huang, Y.P.; Zhang, S.S.; Shen, H.F.; Li, J.Q.; Gao, C.K. Controlled release of the nimodipine-loaded self-microemulsion osmotic pump capsules: development and characterization. AAPS PharmSciTech. 2018, 19, 1308–1319.
|
[13] |
Lew, B.; Kim, I.Y.; Choi, H.; Kim, K.K. Sustained exenatide delivery via intracapsular microspheres for improved survival and function of microencapsulated porcine islets. Drug Deliv. Transl. Res. 2018, 8, 857–862.
|
[14] |
Gan, J.J.; Sun, L.Y.; Chen, G.P.; Ma, W.J.; Zhao, Y.J.; Sun, L.Y. Mesenchymal stem cell exosomes encapsulated oral microcapsules for acute colitis treatment. Adv. Healthc. Mater. 2022, 11, e2201105.
|
[15] |
Huang, H.Q.; Wu, Z.H.; Qi, X.L.; Zhang, H.T.; Chen, Q.; Xing, J.Y.; Chen, H.Y.; Rui, Y. Compression-coated tablets of glipizide using hydroxypropylcellulose for zero-order release: in vitro and in vivo evaluation. Int. J. Pharm. 2013, 446, 211–218.
|
[16] |
Jain, S.K.; Awasthi, A.M.; Jain, N.K.; Agrawal, G.P. Calcium silicate based microspheres of repaglinide for gastroretentive floating drug delivery: Preparation and in vitro characterization. J. Control. Release. 2005, 107, 300–309.
|
[17] |
Gupta, M.K.; Vanwert, A.; Bogner, R.H. Formation of physically stable amorphous drugs by milling with neusilin. J. Pharm. Sci. 2003, 92, 536–551.
|
[18] |
Rojtanatanya, S.; Pongjanyakul, T. Propranolol–magnesium aluminum silicate complex dispersions and particles: Characterization and factors influencing drug release. Int. J. Pharm. 2010, 383, 106–115.
|
[19] |
Takeuchi, H.; Nagira, S.; Yamamoto, H.; Kawashima, Y. Solid dispersion particles of amorphous indomethacin with fine porous silica particles by using spray-drying method. Int. J. Pharm. 2005, 293, 155–164.
|
[20] |
Friedrich, H.; Fussnegger, B.; Kolter, K.; Bodmeier, R. Dissolution rate improvement of poorly water-soluble drugs obtained by adsorbing solutions of drugs in hydrophilic solvents onto high surface area carriers. Eur. J. Pharm. Biopharm. 2006, 62, 171–177.
|
[21] |
Huang, P.; Lian, D.Z.; Ma, H.L.; Gao, N.S.; Zhao, L.M.; Luan, P.; Zeng, X.W. New advances in gated materials of mesoporous silica for drug controlled release. Chin. Chem. Lett. 2021, 32, 3696–3704.
|
[22] |
Cao, Z.Q.; Wang, G.J. Multi-stimuli-responsive polymer materials: particles, films, and bulk gels. Chem. Rec. 2016, 16, 1398–1435.
|
[23] |
Tuwahatu, C.A.; Yeung, C.C.; Lam, Y.W.; Roy, V.A.L. The molecularly imprinted polymer essentials: curation of anticancer, ophthalmic, and projected gene therapy drug delivery systems. J. Control. Release. 2018, 287, 24–34.
|
[24] |
Su, Y.; Zhang, B.L.; Sun, R.W.; Liu, W.F.; Zhu, Q.B.; Zhang, X.; Wang, R.R.; Chen, C.P. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. Drug Deliv. 2021, 28, 1397–1418.
|
[25] |
Kriplani, P.; Guarve, K. Eudragit, a nifty polymer for anticancer preparations: a patent review. Recent Pat. Anticancer Drug Discov. 2022, 17, 92–101.
|
[26] |
Senarat, S.; Pichayakorn, W.; Phaechamud, T.; Tuntarawongsa, S. Antisolvent Eudragit® polymers based in situ forming gel for periodontal controlled drug delivery. J. Drug Deliv. Sci. Technol. 2023, 82, 104361.
|
[27] |
Jain, S.K.; Jain, A.K.; Rajpoot, K. Expedition of eudragit® polymers in the development of novel drug delivery systems. Curr. Drug Deliv. 2020, 17, 448–469.
|
[28] |
Dong, P.; Sahle, F.F.; Lohan, S.B.; Saeidpour, S.; Albrecht, S.; Teutloff, C.; Bodmeier, R.; Unbehauen, M.; Wolff, C.; Haag, R.; Lademann, J.; Patzelt, A.; Schäfer-Korting, M.; Meinke, M.C. pH-sensitive Eudragit® L 100 nanoparticles promote cutaneous penetration and drug release on the skin. J. Control. Release. 2019, 295, 214–222.
|
[29] |
Bukhovets, A.V.; Fotaki, N.; Khutoryanskiy, V.V.; Moustafine, R.I. Interpolymer complexes of eudragit® copolymers as novel carriers for colon-specific drug delivery. Polymers. 2020, 12, 1459.
|
[30] |
Dos Santos, J.; da Silva, G.S.; Velho, M.C.; Beck, R.C.R. Eudragit®: a versatile family of polymers for hot melt extrusion and 3D printing processes in pharmaceutics. Pharmaceutics. 2021, 13, 1424.
|
[31] |
Wang, S.S.; Yang, X.; Lu, W.X.; Jiang, N.; Zhang, G.Q.; Cheng, Z.N.; Liu, W.J. Spray drying encapsulation of CD-MOF nanocrystals into Eudragit® RS microspheres for sustained drug delivery. J. Drug Deliv. Sci. Technol. 2021, 64, 102593.
|
[32] |
Dereymaker, A.; Cinghia, G.; Van den Mooter, G. Eudragit® RL as a stabilizer for supersaturation and a substrate for nanocrystal formation. Eur. J. Pharm. Biopharm. 2017, 114, 250–262.
|
[33] |
Fujimori, J.; Yoshihashi, Y.; Yonemochi, E.; Terada, K. Application of Eudragit RS to thermo-sensitive drug delivery systems II. Effect of temperature on drug permeability through membrane consisting of Eudragit RS/PEG 400 blend polymers. J. Control. Release. 2005, 102, 49–57.
|
[34] |
Paraschiv, M.; Daescu, M.; Bartha, C.; Chiricuta, B.; Baibarac, M. Complex spectroscopy studies of nifedipine photodegradation. Pharmaceutics. 2023, 15, 2613.
|
[35] |
Handa, T.; Singh, S.; Singh, I.P. Characterization of a new degradation product of nifedipine formed on catalysis by atenolol: a typical case of alteration of degradation pathway of one drug by another. J. Pharm. Biomed. Anal. 2014, 89, 6–17.
|
[36] |
Wu, Y.X.; Zhong, X.F.; Li, X.M.; Liu, W.L.; Zhang, Y.X.; Shen, Q.Y.; Xu, S.M.; Xu, P.S. Pharmacokinetics of nifedipine-sustained release tablets in healthy subjects after a single oral administration: bioequivalence analysis and food effects. Clin. Pharmacol. Drug Dev. 2023, 12, 1076–1081.
|
[37] |
Mancia, G.; Cha, G.; Gil-Extremera, B.; Harvey, P.; Lewin, A.J.; Villa, G.; Kjeldsen, S.E. Blood pressure-lowering effects of nifedipine/candesartan combinations in high-risk individuals: subgroup analysis of the DISTINCT randomised trial. J. Hum. Hypertens. 2017, 31, 178–188.
|
[38] |
Sharma, K.J.; Greene, N.; Kilpatrick, S.J. Oral labetalol compared to oral nifedipine for postpartum hypertension: a randomized controlled trial. Hypertens. Pregnancy. 2017, 36, 44–47.
|
[39] |
Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319.
|
[40] |
Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380.
|
[1] | 孙璐, 刘瑜洁, 仰浈臻, 齐宪荣. 包被交联PEI的拓孔介孔硅的制备与表征[J]. 中国药学(英文版), 2015, 24(11): 712-720. |
[2] | 张静, 宋浩静, 卜凡龙, 魏春敏, 袁桂艳, 刘晓燕, 王本杰, 郭瑞臣*. LC-MS法测定人血浆中硝苯地平的浓度及其在药代动力学中的应用[J]. , 2010, 19(6): 471-476. |
[3] | 武静, 王本杰, 魏春敏, 卜凡龙, 郭瑞臣*. 硝苯地平缓释片人体药代动力学研究[J]. , 2007, 16(3): 192-196. |
[4] | 傅崇东, 蒋雪涛, 胡晋红, 张万国. 制备因素对丙烯酸树脂缓释微球中硝苯地平释放的影响[J]. , 1997, 6(4): 203-210. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||