Journal of Chinese Pharmaceutical Sciences ›› 2025, Vol. 34 ›› Issue (9): 860-872.DOI: 10.5246/jcps.2025.09.063
• Original articles • Previous Articles Next Articles
Qian Deng1,#, Zining Peng1,#, Danning Mao1,#, Yuanbo Huang1, Nian Liu1,*(), Weitian Yan2,*(
), Jiangyun Peng2,*(
)
Received:
2025-04-08
Revised:
2025-05-11
Accepted:
2025-06-03
Online:
2025-10-02
Published:
2025-10-02
Contact:
Nian Liu, Weitian Yan, Jiangyun Peng
About author:
# Qian Deng, Zining Peng, and Danning Mao are co-first authors.
Supported by:
Supporting:
Qian Deng, Zining Peng, Danning Mao, Yuanbo Huang, Nian Liu, Weitian Yan, Jiangyun Peng. Exploring the mechanism of Toddalia asiatica (L.) Lam. in the treatment of osteoarthritis through bioinformatics and network pharmacology[J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(9): 860-872.
[1] |
Diamond, L.E.; Grant, T.; Uhlrich, S.D. Osteoarthritis year in review 2023: biomechanics. Osteoarthr. Cartil. 2024, 32, 138–147.
|
[2] |
Steinmetz, J.D.; Culbreth, G.T.; Haile, L.M.; Rafferty, Q.; Lo, J.; Fukutaki, K.G.; Cruz, J.A.; Smith, A.E.; Vollset, S.E.; Brooks, P.M.; Cross, M.; Woolf, A.D.; Hagins, H.; Abbasi-Kangevari, M.; Abedi, A.; Ackerman, I.N.; Amu, H.; Antony, B.; Arabloo, J.; Aravkin, A.Y.; Argaw, A.M.; Artamonov, A.A.; Ashraf, T.; Barrow, A.; Bearne, L.M.; Bensenor, I.M.; Berhie, A.Y.; Bhardwaj, N.; Bhardwaj, P.; Bhojaraja, V.S.; Bijani, A.; Briant, P.S.; Briggs, A.M.; Butt, N.S.; Charan, J.; Chattu, V.K.; Cicuttini, F.M.; Coberly, K.; Dadras, O.; Dai, X.C.; Dandona, L.; Dandona, R.; de Luca, K.; Denova-Gutiérrez, E.; Dharmaratne, S.D.; Dhimal, M.; Dianatinasab, M.; Dreinhoefer, K.E.; Elhadi, M.; Farooque, U.; Farpour, H.R.; Filip, I.; Fischer, F.; Freitas, M.; Ganesan, B.; Gemeda, B.N.B.; Getachew, T.; Ghamari, S.H.; Ghashghaee, A.; Gill, T.K.; Golechha, M.; Golinelli, D.; Gupta, B.; Gupta, V.B.; Gupta, V.K.; Haddadi, R.; Hafezi-Nejad, N.; Halwani, R.; Hamidi, S.; Hanif, A.; Harlianto, N.I.; Haro, J.M.; Hartvigsen, J.; Hay, S.I.; Hebert, J.J.; Heidari, G.; Hosseini, M.S.; Hosseinzadeh, M.; Hsiao, A.K.; Ilic, I.M.; Ilic, M.D.; Jacob, L.; Jayawardena, R.; Jha, R.P.; Jonas, J.B.; Joseph, N.; Kandel, H.; Karaye, I.M.; Khan, M.J.; Kim, Y.J.; Kolahi, A.A.; Korzh, O.; Koteeswaran, R.; Krishnamoorthy, V.; Kumar, G.A.; Kumar, N.; Lee, S.W.; Lim, S.S.; Lobo, S.W.; Lucchetti, G.; Malekpour, M.R.; Malik, A.A.; Mandarano-Filho, L.G.G.; Martini, S.; Mentis, A.F A.; Mesregah, M.K.; Mestrovic, T.; Mirrakhimov, E.M.; Misganaw, A.; Mohammadpourhodki, R.; Mokdad, A.H.; Momtazmanesh, S.; Morrison, S.D.; Murray, C.J.L.; Nassereldine, H.; Netsere, H.B.; Neupane Kandel, S.; Owolabi, M.O.; Panda-Jonas, S.; Pandey, A.; Pawar, S.; Pedersini, P.; Pereira, J.; Radfar, A.; Rashidi, M.M.; Rawaf, D.L.; Rawaf, S.; Rawassizadeh, R.; Rayegani, S.M.; Ribeiro, D.; Roever, L.; Saddik, B.; Sahebkar, A.; Salehi, S.; Sanchez Riera, L.; Sanmarchi, F.; Santric-Milicevic, M.M.; Shahabi, S.; Ali Shaikh, M.; Shaker, E.; Shannawaz, M.; Sharma, R.; Sharma, S.; Shetty, J.K.; Shiri, R.; Shobeiri, P.; Santos Silva, D.A.; Singh, A.; Singh, J.A.; Singh, S.; Skou, S.T.; Slater, H.; Soltani-Zangbar, M.S.; Starodubova, A.V.; Tehrani-Banihashemi, A.; Valadan Tahbaz, S.; Valdez, P.R.; Vo, B.; Vu, L.G.; Wang, Y.P.; Yahyazadeh Jabbari, S.H.; Yonemoto, N.; Yunusa, I.; March, L.M.; Ong, K.L.; Vos, T.; Kopec, J.A. Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: a systematic analysis for the global burden of disease study 2021. Lancet Rheumatol. 2023, 5, e508–e522.
|
[3] |
Latourte, A.; Kloppenburg, M.; Richette, P. Emerging pharmaceutical therapies for osteoarthritis. Nat. Rev. Rheumatol. 2020, 16, 673–688.
|
[4] |
Steinert, A.F.; Ghivizzani, S.C.; Rethwilm, A.; Tuan, R.S.; Evans, C.H.; Nöth, U. Major biological obstacles for persistent cell-based regeneration of articular cartilage. Arthritis Res. Ther. 2007, 9, 213.
|
[5] |
Xu, Y.M.; Xue, S.; Zhang, T.; Jin, X.M.; Wang, C.; Lu, H.M.; Zhong, Y.M.; Chen, H.J.; Zhu, L.B.; Ma, J.Z.; Sang, W.L. Toddalolactone protects against osteoarthritis by ameliorating chondrocyte inflammation and suppressing osteoclastogenesis. Chin. Med. 2022, 17, 18.
|
[6] |
He, H.X.; Li, N.P.; Fan, Y.Q.; Huang, Q.; Song, J.G.; Lv, L.X.; Liu, F.; Wang, L.; Wang, Q.; Gu, J.H. Six new coumarins from the roots of Toddalia asiatica and their anti-inflammatory activities. Chin. J. Nat. Med. 2023, 21, 852–858.
|
[7] |
He, W.X.; Xu, C.L.; Luo, S.J.; He, J.X.; He, L.Y.; Duan, X.Y.; Zheng, Y.; Zhao, T.J. Research progress on chemical constituents and pharmacological effects of Toddalia asiatica (L.) Lam.and its Q-Marker prediction analysis. Chin. Trad. Patent Med. 2024, 46, 507–517.
|
[8] |
Zhang, Y.W.; Hu, Z.L.; Luo, Y.B.; Chen, L.J.; Chen, A.L.; Liu, Y.; Liu, M.; Hu, W.F. Study on the activity screening and mecheanism of the effective analgesic part of Pteropterus chinensis. Asia-Pacific Tradit. Med. 2019, 15, 13–15.
|
[9] |
Yang, K.; Tong, L.; Chen, C.X.; Zhang, P.; Pi, H.F.; Ruan, H.L.; Wu, J.Z. Therapeutic effects of extracts from Radix Toddaliae Asiaticae on collagen-induced arthritis in Balb/c mice. J. Ethnopharmacol. 2013, 146, 355–362.
|
[10] |
Kumagai, M.; Watanabe, A.; Yoshida, I.; Mishima, T.; Nakamura, M.; Nishikawa, K.; Morimoto, Y. Evaluation of aculeatin and toddaculin isolated from toddalia asiatica as anti-inflammatory agents in LPS-stimulated RAW264 macrophages. Biol. Pharm. Bull. 2018, 41, 132–137.
|
[11] |
Qin, S.; Zhang, Y.P.; Chen, X.; Xia, J.Y.; Chen, Y.D.; Kong, D.M. Researches on high throughput screening of drugs to inhibit macrophage migration. J. Guizhou Univ. Tradit. Chin. Med. 2020, 42, 87–90.
|
[12] |
Zeng, Z.; Tian, R.; Feng, J.; Yang, N.A.; Yuan, L. A systematic review on traditional medicine toddalia asiatica (L.) lam.: chemistry and medicinal potential. Saudi Pharm. J. 2021, 29, 781–798.
|
[13] |
Xiao, J.; Zhang, P.; Cai, F.L.; Luo, C.G.; Pu, T.; Pan, X.L.; Tian, M. IL-17 in osteoarthritis: a narrative review. Open Life Sci. 2023, 18, 20220747.
|
[14] |
Hsieh, S.L.; Yang, S.Y.; Lin, C.Y.; He, X.Y.; Tsai, C.H.; Fong, Y.C.; Lo, Y.S.; Tang, C.H. MCP-1 controls IL-17-promoted monocyte migration and M1 polarization in osteoarthritis. Int. Immunopharmacol. 2024, 132, 112016.
|
[15] |
Defois, A.; Bon, N.; Charpentier, A.; Georget, M.; Gaigeard, N.; Blanchard, F.; Hamel, A.; Waast, D.; Armengaud, J.; Renoult, O.; Pecqueur, C.; Maugars, Y.; Boutet, M.A.; Guicheux, J.; Vinatier, C. Osteoarthritic chondrocytes undergo a glycolysis-related metabolic switch upon exposure to IL-1b or TNF. Cell Commun. Signal. 2023, 21, 137.
|
[16] |
Yang, J.; Li, S.S.; Li, Z.Y.; Yao, L.T.; Liu, M.J.; Tong, K.L.; Xu, Q.T.; Yu, B.; Peng, R.; Gui, T.; Tang, W.; Xu, Y.D.; Chen, J.X.; He, J.; Zhao, K.W.; Wang, X.G.; Wang, X.Y.; Zha, Z.G.; Zhang, H.T. Targeting YAP1-regulated glycolysis in fibroblast-like synoviocytes impairs macrophage infiltration to ameliorate diabetic osteoarthritis progression. Adv. Sci. 2024, 11, e2304617.
|
[17] |
Ramasamy, R.; Yan, S.F.; Schmidt, A.M. Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann. N.Y. Acad. Sci. 2011, 1243, 88–102.
|
[18] |
Yao, Q.; Wu, X.H.; Tao, C.; Gong, W.Y.; Chen, M.J.; Qu, M.H.; Zhong, Y.M.; He, T.L.; Chen, S.; Xiao, G.Z. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 56.
|
[19] |
Widden, H.; Placzek, W.J. The multiple mechanisms of MCL1 in the regulation of cell fate. Commun. Biol. 2021, 4, 1029.
|
[20] |
Wyżewski, Z.; Stępkowska, J.; Kobylińska, A.M.; Mielcarska, A.; Mielcarska, M.B. Mcl-1 protein and viral infections: a narrative review. Int. J. Mol. Sci. 2024, 25, 1138.
|
[21] |
Xiong, S.L.; Zhao, Y.; Xu, T.T. DNA methyltransferase 3 beta mediates the methylation of the microRNA-34a promoter and enhances chondrocyte viability in osteoarthritis. Bioengineered. 2021, 12, 11138–11155.
|
[1] | Yage Zhang, Zining Peng, Yuwan Zhou, Jinfang Zhang. Bioinformatics-based identification of autophagy-related key genes in osteoarthritis and therapeutic potential analysis of Eucommin A [J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(9): 831-849. |
[2] | Sara S. Hassan, Amjad I. Oraibi, Ali Majeed Ali Almukram, Hany Aqeel Al-Hussainy, Ahmed Hamza Al-Shammari, Ahmed Mohammed Zheoat. Advances in drug design and discovery using bioinformatics tools [J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(8): 715-731. |
[3] | Yi Wang, Yuyao Xiong. Mechanistic insights into Smilax Glabra and Semen Coicis for gout and hyperuricemia treatment: a network pharmacology and molecular docking approach [J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(8): 741-754. |
[4] | Min Nie, Bayi Liu, Bing Lin, Huamin Wang, Huaqiong Chen, Ying Huang. Screening of key genes and immune infiltration analysis of chronic obstructive pulmonary disease-related ferroptosis [J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(7): 622-632. |
[5] | Yijun Zheng, Zheyuan Wang, Mancai Wang, Qi Xiao, Hongyang Deng, Jipin Li, Lingyi Zhang, Youcheng Zhang. Investigating the potential of Euphorbia helioscopia intervention in gastric cancer with positive lymph node metastasis: insights from molecular dynamics simulation [J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(7): 644-663. |
[6] | Xiaoqin Zhang, Qiuhong Qin, Xiaojie Li, Jiangang Yang, Jibin Ma, Jianping Ren. Identification and validation of key genes involved in cellular senescence in multiple sclerosis using bioinformatics [J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(6): 530-542. |
[7] | Yuewen Li, Qinsheng Zhang, Suqin Hu. Unveiling the prescription patterns and mechanisms of Chinese herbal compound patents in the management of acute appendicitis: A data mining investigation [J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(6): 566-580. |
[8] | Yuqian Zhang, Haiying Niu, Xiaowei Zhang, Weiwei Xie, Kaiyue Zhang, Lantong Zhang, Yiran Jin. Elucidating the mechanism of Kuwanon G in treating diabetic encephalopathy through network pharmacology: A comprehensive study [J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(3): 251-259. |
[9] | Xiaodong Zhu, Xueshi Di, Jinhui Sun. Deciphering the mechanism of action of Chaihu-Astragalus compound in the management of alcoholic liver fibrosis: A network pharmacology and molecular docking approach [J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(2): 163-174. |
[10] | Fan Yang, Rui Li, Wenting Liu, Jian Sun, Chengxiao Zhao, Xiue Feng, Qingshan Li. Unveiling the anti-inflammatory effects and mechanisms of LM49 in a carrageenan-induced acute inflammation model [J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(1): 41-54. |
[11] | Ping Shang, Lin Liu, Yi Fang. Deciphering the mechanism of Liu Wei Di Huang Wan in treating premature ovarian failure: a comprehensive exploration through network pharmacology and molecular docking analysis [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(9): 805-818. |
[12] | Meiling Zhu, Jirong Zhang, Qiurong Zhang, Yu Lin, Xiaoyan Li, Wen Xu, Wei Xu. Integrated approach of network pharmacology and chemometrics for quality control of Chinese patent medicine: A case study on Huo-Luo-San [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(9): 819-836. |
[13] | Xia Li, Beibei Cheng, Junlan Tan, Jiajing Wan, Yuhong Wang, Aiguo Dai. Quercetin, the key constituent of Astragali Radix, modulates ferroptosis in PASMCs and attenuates hypoxia pulmonary hypertension via the MAPK signaling pathway [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(8): 714-729. |
[14] | Xiaoyu Wei, Luhang Yu, Mengru Li, Qiang Xu. A network pharmacological study to investigate the combination of LHQW-XYS in the treatment of COVID-19 olfactory impairment-associated [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(7): 631-646. |
[15] | Xiao Zhang, Ye Zhong, Yongsheng Hu, Bolong Wang. Optimizing medication strategies for liver cancer: unraveling the mechanisms of key drug combinations in the comprehensive guide to effective tumor prescriptions [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(7): 647-658. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||