Journal of Chinese Pharmaceutical Sciences ›› 2025, Vol. 34 ›› Issue (8): 741-754.DOI: 10.5246/jcps.2025.08.055
• Original articles • Previous Articles Next Articles
Received:
2025-03-09
Revised:
2025-05-15
Accepted:
2025-06-20
Online:
2025-08-29
Published:
2025-08-29
Contact:
Yi Wang
Supporting:
Yi Wang, Yuyao Xiong. Mechanistic insights into Smilax Glabra and Semen Coicis for gout and hyperuricemia treatment: a network pharmacology and molecular docking approach[J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(8): 741-754.
[1] |
Dalbeth, N.; Gosling, A.L.; Gaffo, A.; Abhishek, A. Gout. Lancet. 2021, 397, 1843–1855.
|
[2] |
Liu, W. Guidelines for Diagnosis and treatment of gout and hyperuricemia in Integrated Chinese and Western Medicine. J. TCM. 2023, 64, 98–106.
|
[3] |
Saul, H.; Deeney, B.; Swaithes, L.; Roddy, E. How common are side effects of treatment to prevent gout flares when starting allopurinol? BMJ. 2024, 384, q514.
|
[4] |
Gong, F.; Wen, X.L.; Jie, Z.; Qing, H.K.; Xing, G.Z.; Li, H.L.; Chang, H.L. Safety and tolerability of available drugs for hyperuricemia: a critical review and an update on recent developments. J. Chin. Pharm. Sci. 2022, 31, 397–411.
|
[5] |
Gong, F.; Wen, X.L. Advances in the treatment of hyperuricemia with traditional Chinese medicine. J. Chin. Pharm. Sci. 2024, 33, 381–395.
|
[6] |
Wan, H.Z.; Dong, M.G.; Tian, J.; Liang C.Z. Turbidity-stasis arthralgia -- Discussion on the name of gout in TCM. J. TCM. 2011, 52, 1521–1522.
|
[7] |
Shi, R.F. Lu Zhizeng’s experience in treating gout arthralgia. Hebei J. TCM. 2011, 33, 965–966.
|
[8] |
Ping, J.; Xin, Y.W.; Xing, C.D.; Yuan, Y.Z.; Ting, J.; Rong, S.W.; Qi, Z.; Feng, Y.J.; Ying, L.; Xiao, S.; Hong, B.L.; Hong, Y.J.; Yong, Y.F.; Heng, L.Z.; Jiang, Y.P.; Ming, L.G.; Li, S.; Fan, H.; Qing, W.T.; Chun, R.H.; Peng, L.; Ze, G.L.; Yue, L.Z.; Ying, G.; Quan, J.; Ming, Z.; Jian, Y.Z.; Yu, X.; Dong, Y.H. Drug regularity and mechanism of TCM treatment of Gout Xanfang based on data mining and network pharmacology. Shanghai J. TCM. 2019, 57, 72–82.
|
[9] |
Zhao, D.; Huang, P.; Yu, L.; He, Y. Pharmacokinetics-pharmacodynamics modeling for evaluating drug-drug interactions in polypharmacy: development and challenges. Clin. Pharmacokinet. 2024, 63, 919–944.
|
[10] |
Quiroga, R.; Villarreal, M.A. Vinardo: a scoring function based on autodock vina improves scoring, docking, and virtual screening. PLoS One. 2016, 11, e0155183.
|
[11] |
Huang, S.H.; He, M.Q. Analysis on development and evolution of diagnosis name of Bi syndrome. Chin. Archives TCM. 2013, 31, 600–601.
|
[12] |
Ni, H.L. Clinical research progress of internal and external treatment of gouty arthritis. Hunan J. TCM. 2023, 39(10), 204–208.
|
[13] |
Liang, H.H.; Cui, W.; Huang, Z.J.; Li, Z.D.; Yi, Y.S.; Wu, R.Q.; Yang, Q.P.; Meng, X. Progress of clinical research on the treatment of gouty arthritis by Meng Xin Tuckahoe. Hunan J. TCM. 2023, 39(6), 219–222.
|
[14] |
Tan, Y.; Wang, L.M.; Gao, J.; Ma, J.H.; Yu, H.Y.; Zhang, Y.; Wang, T.; Han, L.F. Multiomics integrative analysis for discovering the potential mechanism of dioscin against hyperuricemia mice. J. Proteome Res. 2021, 20, 645–660.
|
[15] |
Feng, W.; Zhong, X.Q.; Zheng, X.X.; Liu, Q.P.; Liu, M.Y.; Liu, X.B.; Lin, C.S.; Xu, Q. Study on the effect and mechanism of quercetin in treating gout arthritis. Int. Immunopharmacol. 2022, 111, 109112.
|
[16] |
Sun, Y.Q.; Li, H.L.; Chen, K.X.; Li, J.; Sun, Z.L. GAS5, as the ceRNA of miR-223-3p, mediates pyroptosis and inhibits the proliferation of brain glial cells U87, and quercetin can enhance its effect. J. Chin. Pharm. Sci. 2024, 33, 230–240.
|
[17] |
Song, S.Y.; Lee, S.H.; Bae, M.S.; Park, D.H.; Cho, S.S. Strong inhibition of xanthine oxidase and elastase of Baccharis trimera (Less.) DC stem extract and analysis of biologically active constituents. Front. Pharmacol. 2023, 14, 1160330.
|
[18] |
Ge, X.; Zhang, Y.; Fang, R.L.; Zhao, J.J.; Huang, J.Y. Exploring the inhibition mechanism of interleukin-1-beta in gouty arthritis by polygonum cuspidatum using network pharmacology and molecular docking: a review. Medicine. 2023, 102, e34396.
|
[19] |
Zhang, H.Y.; Jiang, H.Z.; Zhao, M.Y.; Xu, Y.; Liang, J.B.; Ye, Y.F.; Chen, H.W. Treatment of gout with TCM using turmeric and corn silk: a concise review article and pharmacology network analysis. Evid. Based Complementary Altern. Med. 2022, 2022, 3143733.
|
[20] |
Chen, J.Z.; Zheng, Y.C.; Gong, S.H.; Zheng, Z.G.; Hu, J.; Ma, L.; Li, X.K.; Yu, H.J. Mechanisms of theaflavins against gout and strategies for improving the bioavailability. Phytomedicine. 2023, 114, 154782.
|
[21] |
Galvão, I.; Mastrippolito, D.; Talamini, L.; Aganetti, M.; Rocha, V.; Verdot, C.; Mendes, V.; de Oliveira, V.L.S.; Braga, A.D.; Martins, V.D.; de Faria, A.M.C.; Amaral, F.A.; Georgel, P.; Vieira, A.T.; Muller, S. The therapeutic effect of phosphopeptide P140 attenuates inflammation induced by uric acid crystals in gout arthritis mouse model. Cells. 2022, 11, 3709.
|
[22] |
Xu, L.Q.; Cheng, J.J.; Lu, J.Y.; Lin, G.S.; Yu, Q.X.; Li, Y.C.; Chen, J.N.; Xie, J.H.; Su, Z.R.; Zhou, Q. Integrating network pharmacology and experimental validation to clarify the anti-hyperuricemia mechanism of cortex phellodendri in mice. Front. Pharmacol. 2022, 13, 964593.
|
[23] |
Futosi, K.; Németh, T.; Horváth, Á.I.; Abram, C.L.; Tusnády, S.; Lowell, C.A.; Helyes, Z.; Mócsai, A. Myeloid Src-family kinases are critical for neutrophil-mediated autoinflammation in gout and motheaten models. J. Exp. Med. 2023, 220, e20221010.
|
[24] |
Heitel, P.; Gellrich, L.; Heering, J.; Goebel, T.; Kahnt, A.; Proschak, E.; Schubert-Zsilavecz, M.; Merk, D. Urate transporter inhibitor lesinurad is a selective peroxisome proliferator-activated receptor gamma modulator (sPPARγM) in vitro. Sci. Rep. 2018, 8, 13554.
|
[25] |
Peng, J.; Gu, Y.W.; Liu, J.; Yi, H.; Ruan, D.; Huang, H.Y.; Shu, Y.; Zong, Z.; Wu, R.; Li, H. Identification of SOCS3 and PTGS2 as new biomarkers for the diagnosis of gout by cross-species comprehensive analysis. Heliyon 2024, 10, e30020.
|
[26] |
Köttgen, A.; Albrecht, E.; Teumer, A.; Vitart, V.; Krumsiek, J.; Hundertmark, C.; Pistis, G.; Ruggiero, D.; O’Seaghdha, C.M.; Haller, T.; Yang, Q.; Tanaka, T.; Johnson, A.D.; Kutalik, Z.; Smith, A.V.; Shi, J.; Struchalin, M.; Middelberg, R.P.; Brown, M.J.; Gaffo, A.L.; Gieger, C. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 2013, 45, 145–154.
|
[27] |
Gaal, O.I.; Liu, R.Q.; Marginean, D.; Badii, M.; Cabău, G.; Hotea, I.; Nica, V.; Colcear, D.; Joosten, L.A.B.; Pop, I.V.; Crişan, T.O.; Farcaş, M.; Marginean, D.H.; Badii, M.O.; Peca, L.; Mirea, A.M.; Pop, M.S.; Rus, A.; Pamfil, C.; Merriman, T.R.; Rednic, S.; Popp, R.A.; Crișan, T.O.; Joosten, L.A.B.; Consortium, H. GWAS-identified hyperuricemia-associated IGF1R variant rs6598541 has a limited role in urate mediated inflammation in human mononuclear cells. Sci. Rep. 2024, 14, 3565.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||