Journal of Chinese Pharmaceutical Sciences ›› 2025, Vol. 34 ›› Issue (9): 831-849.DOI: 10.5246/jcps.2025.09.061
• Original articles • Previous Articles Next Articles
Yage Zhang1, Zining Peng2, Yuwan Zhou1, Jinfang Zhang1,*()
Received:
2025-03-20
Revised:
2025-04-17
Accepted:
2025-05-11
Online:
2025-10-02
Published:
2025-10-02
Contact:
Jinfang Zhang
Supported by:
Supporting:
Yage Zhang, Zining Peng, Yuwan Zhou, Jinfang Zhang. Bioinformatics-based identification of autophagy-related key genes in osteoarthritis and therapeutic potential analysis of Eucommin A[J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(9): 831-849.
[1] |
Roelofs, A.J.; De Bari, C. Osteoarthritis year in review 2023: biology. Osteoarthr. Cartil. 2024, 32, 148–158.
|
[2] |
Derwich, M.; Mitus–Kenig, M.; Pawlowska, E. Interdisciplinary approach to the temporomandibular joint osteoarthritis–review of the literature. Med. Kaunas. 2020, 56, E225.
|
[3] |
Macri, E.M.; Selles, R.W.; Stefanik, J.J.; Reijman, M. OARSI year in review 2023: rehabilitation and outcomes. Osteoarthr. Cartil. 2023, 31, 1534–1547.
|
[4] |
Foster, N.E.; Eriksson, L.; Deveza, L.; Hall, M. Osteoarthritis year in review 2022: epidemiology & therapy. Osteoarthr. Cartil. 2023, 31, 876–883.
|
[5] |
Roos, E.M.; Arden, N.K. Strategies for the prevention of knee osteoarthritis. Nat. Rev. Rheumatol. 2015, 12, 92–101.
|
[6] |
Bannuru, R.R.; Osani, M.C.; Vaysbrot, E.E.; Arden, N.K.; Bennell, K.; Bierma–Zeinstra, S.M.A.; Kraus, V.B.; Lohmander, L.S.; Abbott, J.H.; Bhandari, M.; Blanco, F.J.; Espinosa, R.; Haugen, I.K.; Lin, J.; Mandl, L.A.; Moilanen, E.; Nakamura, N.; Snyder–Mackler, L.; Trojian, T.; Underwood, M.; McAlindon, T.E. OARSI guidelines for the non–surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthr. Cartil. 2019, 27, 1578–1589.
|
[7] |
Latourte, A.; Kloppenburg, M.; Richette, P. Emerging pharmaceutical therapies for osteoarthritis. Nat. Rev. Rheumatol. 2020, 16, 673–688.
|
[8] |
Steinert, A.F.; Ghivizzani, S.C.; Rethwilm, A.; Tuan, R.S.; Evans, C.H.; Nöth, U. Major biological obstacles for persistent cell-based regeneration of articular cartilage. Arthritis Res. Ther. 2007, 9, 213.
|
[9] |
Wang, J.; Zhang, Y.; Cao, J.; Wang, Y.; Anwar, N.; Zhang, Z.H.; Zhang, D.M.; Ma, Y.P.; Xiao, Y.; Xiao, L.; Wang, X. The role of autophagy in bone metabolism and clinical significance. Autophagy. 2023, 19, 2409–2427.
|
[10] |
Lotz, M.K.; Caramés, B. Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA. Nat. Rev. Rheumatol. 2011, 7, 579–587.
|
[11] |
Wang, J.Y.; Chen, X.J.; Zhang, L.; Pan, Y.Y.; Gu, Z.X.; Yuan, Y. Anti–inflammatory effects of Eucommia ulmoides Oliv. male flower extract on lipopolysaccharide-induced inflammation. Chin. Med. J. 2019, 132, 319–328.
|
[12] |
Hussain, T.; Yuan, D.; Tan, B.; Murtaza, G.; Rahu, N.; Kalhoro, M.S.; Kalhoro, D.H.; Yin, Y.L. Eucommia ulmoides flavones (EUF) abrogated enterocyte damage induced by LPS involved in NF-κB signaling pathway. Toxicol. Vitro. 2020, 62, 104674.
|
[13] |
Murakami, S.; Tasaka, Y.; Takatori, S.; Tanaka, A.; Kawasaki, H.; Araki, H. Effect of eucommia ulmoides leaf extract on chronic dextran sodium sulfate–induced colitis in mice. Biol. Pharm. Bull. 2018, 41, 864–868.
|
[14] |
Xiao, J.C.; Zhang, G.Y.; Chen, B.H.; He, Q.; Mai, J.L.; Chen, W.J.; Pan, Z.F.; Yang, J.Z.; Li, J.L.; Ma, Y.H.; Wang, T.; Wang, H.B. Quercetin protects against iron overload–induced osteoporosis through activating the Nrf2/HO–1 pathway. Life Sci. 2023, 322, 121326.
|
[15] |
Liu, T.; Cao, X.; Cao, D. Combination of UHPLC-Q Exactive-Orbitrap MS and network pharmacology to reveal the mechanism of Eucommia ulmoides leaves in the treatment of osteoarthritis. J. Food Biochem. 2022, 46, e14204.
|
[16] |
Wang, C.Y.; Tang, L.; He, J.W.; Li, J.; Wang, Y.Z. Ethnobotany, phytochemistry and pharmacological properties of eucommia ulmoides: a review. Am. J. Chin. Med. 2019, 47, 259–300.
|
[17] |
He, X.R.; Wang, J.H.; Li, M.X.; Hao, D.J.; Yang, Y.; Zhang, C.L.; He, R.; Tao, R. Eucommia ulmoides Oliv. Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 2014, 151, 78–92.
|
[18] |
Zhang, R.; Pan, Y.L.; Hu, S.J.; Kong, X.H.; Juan, W.; Mei, Q.B. Effects of total lignans from Eucommia ulmoides barks prevent bone loss in vivo and in vitro. J. Ethnopharmacol. 2014, 155, 104–112.
|
[19] |
Tang, L.; Ding, J.; Yang, K.; Zong, Z.; Wu, R.; Li, H. New insights into the mechanisms and therapeutic strategies of chondrocyte autophagy in osteoarthritis. J. Mol. Med. Berl. 2024, 102, 1229–1244.
|
[20] |
Wang, X.Z.; Liu, Z.L.; Deng, S.; Zhou, J.L.; Li, X.Y.; Huang, J.; Chen, J.W.; Ji, C.; Deng, Y.; Hu, Y. SIRT3 alleviates high glucose–induced chondrocyte injury through the promotion of autophagy and suppression of apoptosis in osteoarthritis progression. Int. Immunopharmacol. 2024, 130, 111755.
|
[21] |
Galluzzi, L.; Green, D.R. Autophagy-independent functions of the autophagy machinery. Cell. 2019, 177, 1682–1699.
|
[22] |
Wu, Y.G.; Li, J.; Zeng, Y.; Pu, W.C.; Mu, X.Y.; Sun, K.B.; Peng, Y.; Shen, B. Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies. Int. J. Oral Sci. 2022, 14, 40.
|
[23] |
Akasaki, Y.; Hasegawa, A.; Saito, M.; Asahara, H.; Iwamoto, Y.; Lotz, M.K. Dysregulated FOXO transcription factors in articular cartilage in aging and osteoarthritis. Osteoarthr. Cartil. 2014, 22, 162–170.
|
[24] |
Fisch, K.M.; Gamini, R.; Alvarez–Garcia, O.; Akagi, R.; Saito, M.; Muramatsu, Y.; Sasho, T.; Koziol, J.A.; Su, A.I.; Lotz, M.K. Identification of transcription factors responsible for dysregulated networks in human osteoarthritis cartilage by global gene expression analysis. Osteoarthr. Cartil. 2018, 26, 1531–1538.
|
[25] |
Chen, X.Q.; Peng, B.; Jiang, H.M.; Zhang C.X.; Li, H.Y.; Li Z.Y. Salvianolic acid B alleviates oxidative stress in non-alcoholic fatty liver disease by mediating the SIRT3/FOXO1 signaling pathway. J. Chin. Pharma. Sci. 2022, 31, 698–710.
|
[26] |
Ohzono, H.; Hu, Y.; Nagira, K.; Kanaya, H.; Okubo, N.; Olmer, M.; Gotoh, M.; Kurakazu, I.; Akasaki, Y.; Kawata, M.; Chen, E.; Chu, A.C.; Johnson, K.A.; Lotz, M.K. Targeting FoxO transcription factors with HDAC inhibitors for the treatment of osteoarthritis. Ann. Rheum Dis. 2023, 82, 262–271.
|
[27] |
Xu, G.; Wang, J.; Ma, L.; Zhao, X.; Luo, W.; Jin, Q. Local intra-articular injection of rapamycin inhibits NLRP3 activity and prevents osteoarthritis in mouse DMM models. Autoimmunity. 2019, 52, 168–175.
|
[28] |
Zhou, X.Y.; Fu, D.; Sun, S.G.; Liu, Q.Y.; Liu, L.X.; Shi, J.; Ge, Z.J.; Ma, Y.; He, Y.L.; Xu, L.; Qian K. Magnesium isoglycyrrhizinate ameliorates isoproterenol-induced myocardial remodeling in mice by regulating oxidative stress and apoptosis via the PI3K/AKT1 signaling pathway. J. Chin. Pharma. Sci. 2025, 34, 321–333.
|
[29] |
Lu, R.; He, Z.; Zhang, W.; Wang, Y.; Cheng, P.; Lv, Z.; Yuan, X.; Guo, F.; You, H.; Chen, A.M.; Hu, W. Oroxin B alleviates osteoarthritis through anti–inflammation and inhibition of PI3K/AKT/mTOR signaling pathway and enhancement of autophagy. Endocrinol. Lausanne. 2022, 13, 1060721.
|
[30] |
Li, J.; Jiang, M.; Yu, Z.; Xiong, C.; Pan, J.; Cai, Z.; Xu, N.; Zhou, X.; Huang, Y.; Yang, Z. Artemisinin relieves osteoarthritis by activating mitochondrial autophagy through reducing TNFSF11 expression and inhibiting PI3K/AKT/mTOR signaling in cartilage. Cell Mol. Biol. Lett. 2022, 27, 62.
|
[31] |
Constantino de Campos, G.; Mundi, R.; Whittington, C.; Toutounji, M.J.; Ngai, W.; Sheehan, B. Osteoarthritis, mobility–related comorbidities and mortality: an overview of meta-analyses. Ther. Adv. Musculoskelet. Dis. 2020, 12, 1759720X20981219.
|
[32] |
Peng, X.Y.; Lu, Y.; Chen, P.Y.; Wong, C.H. The mediating effect of depression on the relationship between osteoarthritis and cardiovascular disease mortality: a cohort study. J. Affect. Disord. 2023, 341, 329–334.
|
[33] |
Dickson, B.M.; Roelofs, A.J.; Rochford, J.J.; Wilson, H.M.; De Bari, C. The burden of metabolic syndrome on osteoarthritic joints. Arthritis Res. Ther. 2019, 21, 289.
|
[34] |
Mandrekar, J.N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010, 5, 1315–1316.
|
[35] |
Holowka, D.; Baird, B. Mechanisms of epidermal growth factor receptor signaling as characterized by patterned ligand activation and mutational analysis. Biochim. Biophys. Acta BBA Biomembr. 2017, 1859, 1430–1435.
|
[36] |
Ciardiello, F.; Hirsch, F.R.; Pirker, R.; Felip, E.; Valencia, C.; Smit, E.F. The role of anti-EGFR therapies in EGFR-TKI-resistant advanced non–small cell lung cancer. Cancer Treat. Rev. 2024, 122, 102664.
|
[37] |
Jia, H.; Ma, X.; Tong, W.; Doyran, B.; Sun, Z.; Wang, L.; Zhang, X.; Zhou, Y.; Badar, F.; Chandra, A.; Lu, X.; Xia, Y.; Han, L.; Enomoto-Iwamoto, M.; Qin, L. EGFR signaling is critical for maintaining the superficial layer of articular cartilage and preventing osteoarthritis initiation. Osteoarthr. Cartil. 2017, 25, S61–S62.
|
[38] |
Wei, Y.L.; Ma, X.Y.; Sun, H.; Gui, T.; Li, J.; Yao, L.T.; Zhong, L.L.; Yu, W.; Han, B.; Nelson, C.L.; Han, L.; Beier, F.; Enomoto-Iwamoto, M.; Ahn, J.; Qin, L. EGFR signaling is required for maintaining adult cartilage homeostasis and attenuating osteoarthritis progression. J. Bone Miner. Res. 2022, 37, 1012–1023.
|
[39] |
Bellini, M.; Pest, M.A.; Miranda–Rodrigues, M.; Qin, L.; Jeong, J.W.; Beier, F. Overexpression of MIG-6 in the cartilage induces an osteoarthritis–like phenotype in mice. Arthritis Res. Ther. 2020, 22, 119.
|
[40] |
Gui, T.; Wei, Y.L.; Luo, L.J.; Li, J.; Zhong, L.L.; Yao, L.T.; Beier, F.; Nelson, C.L.; Tsourkas, A.; Liu, X.S.; Enomoto–Iwamoto, M.; Yu, F.F.; Cheng, Z.L.; Qin, L. Activating EGFR signaling attenuates osteoarthritis development following loading injury in mice. J. Bone Miner. Res. 2020, 37, 2498–2511.
|
[41] |
Wei, Y.L.; Luo, L.J.; Gui, T.; Yu, F.F.; Yan, L.S.; Yao, L.T.; Zhong, L.L.; Yu, W.; Han, B.; Patel, J.M.; Liu, J.F.; Beier, F.; Levin, L.S.; Nelson, C.; Shao, Z.W.; Han, L.; Mauck, R.L.; Tsourkas, A.; Ahn, J.; Cheng, Z.L.; Qin, L. Targeting cartilage EGFR pathway for osteoarthritis treatment. Sci. Transl. Med. 2021, 13, eabb3946.
|
[42] |
Li, N.N.; Xia, N.; He, J.Y.; Liu, M.L.; Gu, M.Y.; Lu, Y.Z.; Yang, H.Y.; Hao, Z.H.; Zha, L.F.; Wang, X.H.; Wang, W.M.; Hu, D.S.; Hu, J.; Cheng, X. Amphiregulin improves ventricular remodeling after myocardial infarction by modulating autophagy and apoptosis. FASEB J. 2024, 38, e23488.
|
[43] |
Lee, K.; Seo, I.; Choi, M.H.; Jeong, D. Roles of mitogen–activated protein kinases in osteoclast biology. Int. J. Mol. Sci. 2018, 19, 3004.
|
[44] |
Wada, T.; Nakashima, T.; Hiroshi, N.; Penninger, J.M. RANKL–RANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med. 2006, 12, 17–25.
|
[45] |
Ross, F.P. M-CSF, c-Fms, and signaling in osteoclasts and their precursors. Ann. NY Acad. Sci. 2006, 1068, 110–116.
|
[46] |
Gómez–Puerto, M.C.; Verhagen, L.P.; Braat, A.K.; Lam, E.W.; Coffer, P.J.; Lorenowicz, M.J. Activation of autophagy by FOXO3 regulates redox homeostasis during osteogenic differentiation. Autophagy. 2016, 12, 1804–1816.
|
[47] |
Wei, M.; Duan, D.; Liu, Y.; Wang, Z.; Li, Z. Autophagy may protect MC3T3–E1 cells from fluoride-induced apoptosis. Mol. Med. Rep. 2014, 9, 2309–2315.
|
[48] |
Wang, Z.; Liu, N.; Liu, K.; Zhou, G.; Gan, J.; Wang, Z.; Shi, T.; He, W.; Wang, L.; Guo, T.; Bao, N.; Wang, R.; Huang, Z.; Chen, J.; Dong, L.; Zhao, J.; Zhang, J. Autophagy mediated CoCrMo particle-induced peri-implant osteolysis by promoting osteoblast apoptosis. Autophagy. 2015, 11, 2358–2369.
|
[49] |
Chai, F.; Peng, H.X.; Qin, L.X.; Liu, C.H.; Zeng, Y.L.; Wang, R.; Xu, G.D.; Wang, R.Q.; Wei, G.J.; Huang, H.Y.; Lan, Y.; Chen, W.C.; Wang, C.F. MicroRNA miR–181d–5p regulates the MAPK signaling pathway by targeting mitogen–activated protein kinase 8 (MAPK8) to improve lupus nephritis. Gene. 2024, 893, 147961.
|
[50] |
He, Q.S.; Ding, H.M. Bioinformatics analysis of rheumatoid arthritis tissues identifies genes and potential drugs that are expressed specifically. Sci. Rep. 2023, 13, 4508.
|
[51] |
Aslam, B.; Hussain, A.; Faisal, M.N.; Kousar, S.; Roobi, A.; Sajid, M.R.; Gul, A. Polyherbal extract improves glycometabolic control in alloxan–induced diabetic rats via down-regulating the MAPK/JNK pathway, modulating Nrf-2/Keap-1 expression, and stimulating insulin signaling. Iran J. Basic Med. Sci. 2024, 27, 170–179.
|
[52] |
Itah, Z.; Chaudhry, S.; Raju Ponny, S.; Aydemir, O.; Lee, A.; Cavanagh-Kyros, J.; Tournier, C.; Muller, W.J.; Davis, R.J. HER2–driven breast cancer suppression by the JNK signaling pathway. Proc. Natl. Acad. Sci. USA. 2023, 120, e2218373120.
|
[1] | Qian Deng, Zining Peng, Danning Mao, Yuanbo Huang, Nian Liu, Weitian Yan, Jiangyun Peng. Exploring the mechanism of Toddalia asiatica (L.) Lam. in the treatment of osteoarthritis through bioinformatics and network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(9): 860-872. |
[2] | Yongmei Li, Yuan Wang, Xiaoming Zhang, Yiwen Gao, Chunhong Xin, Nan Zhang. Impact of Huanglian Jiedu decoction on myocardial mitochondrial autophagy in spontaneously hypertensive rats [J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(9): 850-859. |
[3] | Sara S. Hassan, Amjad I. Oraibi, Ali Majeed Ali Almukram, Hany Aqeel Al-Hussainy, Ahmed Hamza Al-Shammari, Ahmed Mohammed Zheoat. Advances in drug design and discovery using bioinformatics tools [J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(8): 715-731. |
[4] | Min Nie, Bayi Liu, Bing Lin, Huamin Wang, Huaqiong Chen, Ying Huang. Screening of key genes and immune infiltration analysis of chronic obstructive pulmonary disease-related ferroptosis [J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(7): 622-632. |
[5] | Jingjing Su, Kangkang Su, Yanping Song, Lihui Hao, Xing Wang, Linquan Yang, Chao Wang, Shuxia Chen, Jian Gu. Bioinformatics-based investigation of the therapeutic potential of Tongxinluo capsule in acute myocardial infarction [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(11): 1040-1057. |
[6] | Qinqing Li, Yanli Xin, Pulin Liu, Kaiwen Li, Caifang Jing, Xuelan Zhang, Wenbin He. Deciphering the therapeutic mechanisms of Fructus Ligustri Lucidi on diabetic nephropathy via bioinformatics analysis [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(11): 1025-1039. |
[7] | Rong Huang, Xiaojiao Hu, Runfang Zhang, Xiaohui Li, Juan Cen. Study on the dose-effect relationship and mechanism of reactive oxygen species promoted neuroprotection [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(1): 46-56. |
[8] | Wuyinxiao Zheng, Haiping Li, Laichun Luo, Chunling Hu, Pengtao You. PI3K/AKT/mTOR pathway inhibition and miR-210-mediated suppression of Atg7 promote autophagy in TOPC-induced apoptosis of H1975 cells [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 881-892. |
[9] | Dongsheng Wei, Xiaosheng Liu, Luzhen Li, Jiajie Qi, Yuxuan Wang, Zhe Zhang. Unraveling the biological and immunological mechanisms of safflower-danshen in the treatment of coronary atherosclerotic heart disease: a comprehensive bioinformatics and single-cell sequencing approach [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(10): 796-812. |
[10] | Yahui Zhao, Yahui Zhao, Juan Zhao, Jiye Lu, Wei Tian, Jinpeng Hu, Bin Su, Lihua Fu, Ran Guo. Dexamethasone up-regulates TNFAIP3 to attenuate inflammatory response with smoke inhalation-induced acute lung injury based on the GEO database [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(9): 689-697. |
[11] | Kunpeng Yao, Daoping Zhang, Qili Liu, Huzhi Cai, Qingyang Chen, Xinyu Chen. Integrating bioinformatics to identify and analyze feature genes of acute myocardial infarction and potential Chinese medicine prediction [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(12): 912-927. |
[12] | Weiwei Jiang, Haiyan Quan, Lu He, Xing Jiang. The diagnostic and prognostic value of CCTs in human hepatocellular carcinoma: a study based on integrated bioinformatics [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(10): 782-797. |
[13] | Jingliang Zhang, Tao Hu, Xiaoyan Liu, Yuanjun Zhu, Xiaoling Chen, Ye Liu, Yinye Wang. 002C-3 protects the brain against ischemia-reperfusion injury by inhibiting autophagy and stimulating CaMKK/CaMKIV/HDAC4 pathways in mice [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(8): 598-604. |
[14] | Yao Zhao, Jingying Zhang, Yingjie Hu, Jiashuan Wu, Yingzi Bu, Wanliang Lu. Augmented efficacy and the mechanism of a combined use of daunorubicin with rofecoxib in treatment of triple-negative breast cancer [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(6): 438-447. |
[15] | Zhe Wang, Xia Yuan, Zemei Ge, Fuxiang Ran, Jun Wu, Runtao Li, Jingrong Cui. A new proteasome inhibitor YSY-01A induced autophagy in PC-3M cells [J]. Journal of Chinese Pharmaceutical Sciences, 2014, 23(8): 565-571. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||