Journal of Chinese Pharmaceutical Sciences ›› 2025, Vol. 34 ›› Issue (1): 1-13.DOI: 10.5246/jcps.2025.01.001
• Review • Next Articles
Liangrong Guo1,2,3,4, Guoyue Liu1,2,3,4, Ju Sun1,2,3,4, Dengguo Wei1,2,3,4,*()
Received:
2024-10-27
Revised:
2024-11-05
Accepted:
2024-12-23
Online:
2025-02-20
Published:
2025-02-20
Contact:
Dengguo Wei
Supported by:
Supporting:
Liangrong Guo, Guoyue Liu, Ju Sun, Dengguo Wei. Research progress on the non-coding region of single-stranded positive-sense RNA (+ssRNA) viruses[J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(1): 1-13.
[1] |
Thivierge, K.; Nicaise, V.; Dufresne, P.J.; Cotton, S.; Laliberté, J.F.; Le Gall, O.; Fortin, M.G. Plant virus RNAs. coordinated recruitment of conserved host functions by (+) ssRNA viruses during early infection events. Plant Physiol. 2005, 138, 1822–1827.
|
[2] |
Eruera, A.R.; McSweeney, A.M.; McKenzie-Goldsmith, G.M.; Ward, V.K. Protein nucleotidylylation in +ssRNA viruses. Viruses. 2021, 13, 1549.
|
[3] |
Liu, Y.; Wimmer, E.; Paul, A.V. Cis-acting RNA elements in human and animal plus-strand RNA viruses. Biochim. Biophys. Acta. 2009, 1789, 495–517.
|
[4] |
Slonchak, A.; Wang, X.H.; Aguado, J.; Sng, J.D.J.; Chaggar, H.; Freney, M.E.; Yan, K.X.; Torres, F.J.; Amarilla, A.A.; Balea, R.; Setoh, Y.X.; Peng, N.; Watterson, D.; Wolvetang, E.; Suhrbier, A.; Khromykh, A.A. Zika virus noncoding RNA cooperates with the viral protein NS5 to inhibit STAT1 phosphorylation and facilitate viral pathogenesis. Sci. Adv. 2022, 8, eadd8095.
|
[5] |
Zhao, H.X.; Chen, M.S.; Pettersson, U. Identification of adenovirus-encoded small RNAs by deep RNA sequencing. Virology. 2013, 442, 148–155.
|
[6] |
Bailey, D.; Karakasiliotis, I.; Vashist, S.; Chung, L.M.W.; Rees, J.; McFadden, N.; Benson, A.; Yarovinsky, F.; Simmonds, P.; Goodfellow, I. Functional analysis of RNA structures present at the 3′ extremity of the murine norovirus genome: the variable polypyrimidine tract plays a role in viral virulence. J. Virol. 2010, 84, 2859–2870.
|
[7] |
Borah, S.; Darricarrère, N.; Darnell, A.; Myoung, J.; Steitz, J.A. A viral nuclear noncoding RNA binds re-localized poly(A) binding protein and is required for late KSHV gene expression. PLoS Pathog. 2011, 7, e1002300.
|
[8] |
Liu, Y.Z.; Zhang, Y.; Wang, M.S.; Cheng, A.C.; Yang, Q.; Wu, Y.; Jia, R.Y.; Liu, M.F.; Zhu, D.K.; Chen, S.; Zhang, S.Q.; Zhao, X.X.; Huang, J.; Mao, S.; Ou, X.M.; Gao, Q.; Wang, Y.; Xu, Z.W.; Chen, Z.L.; Zhu, L.; Luo, Q.H.; Liu, Y.Y.; Yu, Y.L.; Zhang, L.; Tian, B.; Pan, L.C.; Chen, X.Y. Structures and functions of the 3′ untranslated regions of positive-sense single-stranded RNA viruses infecting humans and animals. Front. Cell Infect. Microbiol. 2020, 10, 453.
|
[9] |
Bassett, M.; Salemi, M.; Rife Magalis, B. Lessons learned and yet-to-be learned on the importance of RNA structure in SARS-CoV-2 replication. Microbiol. Mol. Biol. Rev. 2022, 86, e0005721.
|
[10] |
Tidu, A.; Janvier, A.; Schaeffer, L.; Sosnowski, P.; Kuhn, L.; Hammann, P.; Westhof, E.; Eriani, G.; Martin, F. The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation. RNA. 2020, 27, 253–264.
|
[11] |
Zhang, X.; Liao, C.L.; Lai, M.M. Coronavirus leader RNA regulates and initiates subgenomic mRNA transcription both in trans and in cis. J. Virol. 1994, 68, 4738–4746.
|
[12] |
Yang, D.; Leibowitz, J.L. The structure and functions of coronavirus genomic 3’ and 5’ ends. Virus Res. 2015, 206, 120–133.
|
[13] |
Yang, D.; Liu, P.H.; Giedroc, D.P.; Leibowitz, J. Mouse hepatitis virus stem-loop 4 functions as a spacer element required to drive subgenomic RNA synthesis. J. Virol. 2011, 85, 9199–9209.
|
[14] |
Manfredonia, I.; Nithin, C.; Ponce-Salvatierra, A.; Ghosh, P.; Wirecki, T.K.; Marinus, T.; Ogando, N.S.; Snijder, E.J.; van Hemert, M.J.; Bujnicki, J.M.; Incarnato, D. Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically-relevant elements. Nucleic Acids Res. 2020, 48, 12436–12452.
|
[15] |
Gautam, R.; Mishra, S.; Milhotra, A.; Nagpal, R.; Mohan, M.; Singhal, A.; Kumari, P. Challenges with mosquito-borne viral diseases: outbreak of the monsters. Curr. Top. Med. Chem. 2017, 17, 2199–2214.
|
[16] |
Huang, Z.W.; Zhang, Y.X.; Li, H.Y.; Zhu, J.J.; Song, W.C.; Chen, K.D.; Zhang, Y.J.; Lou, Y.L. Vaccine development for mosquito-borne viral diseases. Front. Immunol. 2023, 14, 1161149.
|
[17] |
Brinton, M.A.; Basu, M. Functions of the 3′ and 5′ genome RNA regions of members of the genus Flavivirus. Virus Res. 2015, 206, 108–119.
|
[18] |
Yu, L.; Nomaguchi, M.; Padmanabhan, R.; Markoff, L. Specific requirements for elements of the 5′ and 3′ terminal regions in flavivirus RNA synthesis and viral replication. Virology. 2008, 374, 170–185.
|
[19] |
Lodeiro, M.F.; Filomatori, C.V.; Gamarnik, A.V. Structural and functional studies of the promoter element for dengue virus RNA replication. J. Virol. 2009, 83, 993–1008.
|
[20] |
Wengler, G.; Wengler, G.; Gross, H.J. Studies on virus-specific nucleic acids synthesized in vertebrate and mosquito cells infected with flaviviruses. Virology. 1978, 89, 423–437.
|
[21] |
Cleaves, G.R.; Dubin, D.T. Methylation status of intracellular dengue type 2 40 S RNA. Virology. 1979, 96, 159–165.
|
[22] |
Filomatori, C.V.; Lodeiro, M.F.; Alvarez, D.E.; Samsa, M.M.; Pietrasanta, L.; Gamarnik, A.V. A 5′ RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev. 2006, 20, 2238–2249.
|
[23] |
Nazneen, F.; Thompson, E.A.; Blackwell, C.; Bai, J.S.; Huang, F.Q.; Bai, F.W. An effective live-attenuated Zika vaccine candidate with a modified 5′ untranslated region. NPJ Vaccines. 2023, 8, 50.
|
[24] |
Wang, C.; Sarnow, P.; Siddiqui, A. Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism. J. Virol. 1993, 67, 3338–3344.
|
[25] |
Honda, M.; Beard, M.R.; Ping, L.H.; Lemon, S.M. A phylogenetically conserved stem-loop structure at the 5′ border of the internal ribosome entry site of hepatitis C virus is required for cap-independent viral translation. J. Virol. 1999, 73, 1165–1174.
|
[26] |
Tsukiyama-Kohara, K.; Iizuka, N.; Kohara, M.; Nomoto, A. Internal ribosome entry site within hepatitis C virus RNA. J. Virol. 1992, 66, 1476–1483.
|
[27] |
Friebe, P.; Lohmann, V.; Krieger, N.; Bartenschlager, R. Sequences in the 5′ nontranslated region of hepatitis C virus required for RNA replication. J. Virol. 2001, 75, 12047–12057.
|
[28] |
Otto, G.A.; Puglisi, J.D. The pathway of HCV IRES-mediated translation initiation. Cell. 2004, 119, 369–380.
|
[29] |
Khaliq, S.; Jahan, S.; Pervaiz, A.; Ali Ashfaq, U.; Hassan, S. Down-regulation of IRES containing 5′ UTR of HCV genotype 3a using siRNAs. Virol. J. 2011, 8, 221.
|
[30] |
Mason, P.W.; Grubman, M.J.; Baxt, B. Molecular basis of pathogenesis of FMDV. Virus Res. 2003, 91, 9–32.
|
[31] |
Pilipenko, E.V.; Blinov, V.M.; Chernov, B.K.; Dmitrieva, T.M.; Agol, V.I. Conservation of the secondary structure elements of the 5′-untranslated region of cardio- and aphthovirus RNAs. Nucleic Acids Res. 1989, 17, 5701–5711.
|
[32] |
Zhu, Z.X.; Yang, F.; Cao, W.J.; Liu, H.N.; Zhang, K.S.; Tian, H.; Dang, W.; He, J.J.; Guo, J.H.; Liu, X.T.; Zheng, H.X. The pseudoknot region of the 5′ untranslated region is a determinant of viral tropism and virulence of foot-and-mouth disease virus. J. Virol. 2019, 93, e02039-18.
|
[33] |
Martínez-Salas, E. The impact of RNA structure on picornavirus IRES activity. Trends Microbiol. 2008, 16, 230–237.
|
[34] |
Simmonds, P.; Karakasiliotis, I.; Bailey, D.; Chaudhry, Y.; Evans, D.J.; Goodfellow, I.G. Bioinformatic and functional analysis of RNA secondary structure elements among different Genera of human and animal caliciviruses. Nucleic Acids Res. 2008, 36, 2530–2546.
|
[35] |
Karst, S.M.; Wobus, C.E.; Lay, M.; Davidson, J.; Virgin, H.W. 4th. STAT1-dependent innate immunity to a Norwalk-like virus. Science. 2003, 299, 1575–1578.
|
[36] |
Karakasiliotis, I.; Vashist, S.; Bailey, D.; Abente, E.J.; Green, K.Y.; Roberts, L.O.; Sosnovtsev, S.V.; Goodfellow, I.G. Polypyrimidine tract binding protein functions as a negative regulator of feline calicivirus translation. PLoS One. 2010, 5, e9562.
|
[37] |
Vashist, S.; Urena, L.; Chaudhry, Y.; Goodfellow, I. Identification of RNA-protein interaction networks involved in the norovirus life cycle. J. Virol. 2012, 86, 11977–11990.
|
[38] |
Sharp, P.M.; Hahn, B.H. Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 2011, 1, a006841.
|
[39] |
Alexiev, I.; Mavian, C.; Paisie, T.; Ciccozzi, M.; Dimitrova, R.; Gancheva, A.; Kostadinova, A.; Seguin-Devaux, C.; Salemi, M. Analysis of the origin and dissemination of HIV-1 subtype C in Bulgaria. Viruses. 2022, 14, 263.
|
[40] |
Umunnakwe, C.N.; Duchon, A.; Nikolaitchik, O.A.; Rahman, S.A.; Liu, Y.; Chen, J.B.; Tai, S.; Pathak, V.K.; Hu, W.S. Specific guanosines in the HIV-2 leader RNA are essential for efficient viral genome packaging. J. Mol. Biol. 2021, 433, 166718.
|
[41] |
Jonard, G.; Richards, K.; Mohier, E.; Gerlinger, P. Nucleotide sequence at the 5′ extremity of tobacco-mosaic-virus RNA. 2. The coding region (nucleotides 69-236). Eur. J. Biochem. 1978, 84, 521–531.
|
[42] |
Gallie, D.R.; Sleat, D.E.; Watts, J.W.; Turner, P.C.; Wilson, T.M. The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Res. 1987, 15, 3257–3273.
|
[43] |
Gallie, D.R. The 5′‐leader of tobacco mosaic virus promotes translation through enhanced recruitment of eIF4F. Nucleic Acids Res. 2002, 30, 3401–3411.
|
[44] |
Liu, Q.; Wang, H.Y. Porcine enteric coronaviruses: an updated overview of the pathogenesis, prevalence, and diagnosis. Vet. Res. Commun. 2021, 45, 75–86.
|
[45] |
Goebel, S.J.; Miller, T.B.; Bennett, C.J.; Bernard, K.A.; Masters, P.S. A hypervariable region within the 3′ cis-acting element of the murine coronavirus genome is nonessential for RNA synthesis but affects pathogenesis. J. Virol. 2007, 81, 1274–1287.
|
[46] |
Zhang, X.W.; Li, Y.H.; Cao, Y.Y.; Wu, Y.; Cheng, G. The role of noncoding RNA in the transmission and pathogenicity of flaviviruses. Viruses. 2024, 16, 242.
|
[47] |
Manzano, M.; Reichert, E.D.; Polo, S.; Falgout, B.; Kasprzak, W.; Shapiro, B.A.; Padmanabhan, R. Identification of cis-acting elements in the 3′-untranslated region of the dengue virus type 2 RNA that modulate translation and replication. J. Biol. Chem. 2011, 286, 22521–22534.
|
[48] |
Sztuba-Solinska, J.; Teramoto, T.; Rausch, J.W.; Shapiro, B.A.; Padmanabhan, R.; Le Grice, S.F.J. Structural complexity of dengue virus untranslated regions: cis-acting RNA motifs and pseudoknot interactions modulating functionality of the viral genome. Nucleic Acids Res. 2013, 41, 5075–5089.
|
[49] |
Sakai, M.; Yoshii, K.; Sunden, Y.; Yokozawa, K.; Hirano, M.; Kariwa, H. Variable region of the 3′ UTR is a critical virulence factor in the Far-Eastern subtype of tick-borne encephalitis virus in a mouse model. J. Gen. Virol. 2014, 95, 823–835.
|
[50] |
Mazeaud, C.; Freppel, W.; Chatel-Chaix, L. The multiples fates of the flavivirus RNA genome during pathogenesis. Front. Genet. 2018, 9, 595.
|
[51] |
Xie, X.P.; Zou, J.; Zhang, X.W.; Zhou, Y.Y.; Routh, A.L.; Kang, C.B.; Popov, V.L.; Chen, X.W.; Wang, Q.Y.; Dong, H.P.; Shi, P.Y. Dengue NS2A protein orchestrates virus assembly. Cell Host Microbe. 2019, 26, 606–622.e8.
|
[52] |
Zhang, X.W.; Xie, X.P.; Xia, H.J.; Zou, J.; Huang, L.F.; Popov, V.L.; Chen, X.W.; Shi, P.Y. Zika virus NS2A-mediated virion assembly. mBio. 2019, 10, e02375-19.
|
[53] |
Tanaka, T.; Kato, N.; Cho, M.J.; Shimotohno, K. A novel sequence found at the 3′ terminus of hepatitis C virus genome. Biochem. Biophys. Res. Commun. 1995, 215, 744–749.
|
[54] |
Kolykhalov, A.A.; Feinstone, S.M.; Rice, C.M. Identification of a highly conserved sequence element at the 3′ terminus of hepatitis C virus genome RNA. J. Virol. 1996, 70, 3363–3371.
|
[55] |
Tan, S.L.(Ed.). HCV 5′ and 3′ UTR: When Translation Meets Replication. In: Tan SL, ed. Hepatitis C Viruses: Genomes and Molecular Biology. Norfolk (UK): Horizon Bioscience. 2006. Chapter 2.
|
[56] |
Friebe, P.; Bartenschlager, R. Genetic analysis of sequences in the 3′ nontranslated region of hepatitis C virus that are important for RNA replication. J. Virol. 2002, 76, 5326–5338.
|
[57] |
Cantero-Camacho, Á.; Gallego, J. The conserved 3′X terminal domain of hepatitis C virus genomic RNA forms a two-stem structure that promotes viral RNA dimerization. Nucleic Acids Res. 2015, 43, 8529–8539.
|
[58] |
Baba, T.; Ara, T.; Hasegawa, M.; Takai, Y.; Okumura, Y.; Baba, M.; Datsenko, K.A.; Tomita, M.; Wanner, B.L.; Mori, H. Construction of escherichia coli K-12 in-frame, single-gene knockout mutants: the keio collection. Mol. Syst. Biol. 2006, 2, 2006.0008.
|
[59] |
Serrano, P.; Pulido, M.R.; Sáiz, M.; Martínez-Salas, E. The 3′ end of the foot-and-mouth disease virus genome establishes two distinct long-range RNA-RNA interactions with the 5′ end region. J. Gen. Virol. 2006, 87, 3013–3022.
|
[60] |
López de Quinto, S.; Sáiz, M.; de la Morena, D.; Sobrino, F.; Martínez-Salas, E. IRES-driven translation is stimulated separately by the FMDV 3′-NCR and poly(A) sequences. Nucleic Acids Res. 2002, 30, 4398–4405.
|
[61] |
Chang, K.O.; George, D.W.; Patton, J.B.; Green, K.Y.; Sosnovtsev, S.V. Leader of the capsid protein in feline calicivirus promotes replication of Norwalk virus in cell culture. J. Virol. 2008, 82, 9306–9317.
|
[62] |
Zhang, J.L.; Crumpacker, C. HIV UTR, LTR, and epigenetic immunity. Viruses. 2022, 14, 1084.
|
[63] |
Rietveld, K.; Linschooten, K.; Pleij, C.W.; Bosch, L. The three-dimensional folding of the tRNA-like structure of tobacco mosaic virus RNA. A new building principle applied twice. EMBO J. 1984, 3, 2613–2619.
|
[64] |
Gallie, D.R.; Walbot, V. RNA pseudoknot domain of tobacco mosaic virus can functionally substitute for a poly(A) tail in plant and animal cells. Genes Dev. 1990, 4, 1149–1157.
|
[65] |
Chujo, T.; Ishibashi, K.; Miyashita, S.; Ishikawa, M. Functions of the 5′- and 3′-untranslated regions of tobamovirus RNA. Virus Res. 2015, 206, 82–89.
|
[66] |
Lin, C.H.; Hsieh, F.C.; Chang, Y.C.; Yang, C.Y.; Hsu, H.W.; Yang, C.C.; Tam, H.M.H.; Wu, H.Y. Targeting the conserved coronavirus octamer motif GGAAGAGC is a strategy for the development of coronavirus vaccine. Virol. J. 2023, 20, 267.
|
[67] |
Lu, S.S.; Luo, S.D.; Liu, C.; Li, M.L.; An, X.P.; Li, M.Z.; Hou, J.; Fan, H.H.; Mao, P.Y.; Tong, Y.G.; Song, L.H. Induction of significant neutralizing antibodies against SARS-CoV-2 by a highly attenuated pangolin coronavirus variant with a 104nt deletion at the 3′-UTR. Emerg. Microbes Infect. 2023, 12, 2151383.
|
[68] |
Durbin, A.P.; Karron, R.A.; Sun, W.; Vaughn, D.W.; Reynolds, M.J.; Perreault, J.R.; Thumar, B.; Men, R.; Lai, C.J.; Elkins, W.R.; Chanock, R.M.; Murphy, B.R.; Whitehead, S.S. Attenuation and immunogenicity in humans of a live dengue virus type-4 vaccine candidate with a 30 nucleotide deletion in its 3′-untranslated region. Am. J. Trop. Med. Hyg. 2001, 65, 405–413.
|
[69] |
Palanichamy Kala, M.; St John, A.L.; Rathore, A.P.S. Dengue: update on clinically relevant therapeutic strategies and vaccines. Curr. Treat. Options Infect. Dis. 2023, 15, 27–52.
|
[70] |
Durbin, A.P. Historical discourse on the development of the live attenuated tetravalent dengue vaccine candidate TV003/TV005. Curr. Opin. Virol. 2020, 43, 79–87.
|
[71] |
Zhang, Q.Y.; Liu, S.Q.; Li, X.D.; Li, J.Q.; Zhang, Y.N.; Deng, C.L.; Zhang, H.L.; Li, X.F.; Fang, C.X.; Yang, F.X.; Zhang, B.; Xu, Y.; Ye, H.Q. Sequence duplication in 3′ UTR modulates virus replication and virulence of Japanese encephalitis virus. Emerg. Microbes Infect. 2022, 11, 123–135.
|
[72] |
Graham, M.E.; Merrick, C.; Akiyama, B.M.; Szucs, M.J.; Leach, S.; Kieft, J.S.; Beckham, J.D. Zika virus dumbbell-1 structure is critical for sfRNA presence and cytopathic effect during infection. mBio. 2023, 14, e0110823.
|
[73] |
Wang, M.M.; Liniger, M.; Muñoz-González, S.; Bohórquez, J.A.; Hinojosa, Y.; Gerber, M.; López-Soria, S.; Rosell, R.; Ruggli, N.; Ganges, L. A polyuridine insertion in the 3′ untranslated region of classical swine fever virus activates immunity and reduces viral virulence in piglets. J. Virol. 2020, 94, e01214-19.
|
[74] |
Biswal, J.K.; Subramaniam, S.; Ranjan, R.; Pattnaik, B. Partial deletion of stem-loop 2 in the 3′ untranslated region of foot-and-mouth disease virus identifies a region that is dispensable for virus replication. Arch. Virol. 2016, 161, 2285–2290.
|
[75] |
Yuan, W.; Zhang, Y.; Wang, J.; Liu, X.M.; Zhao, W.B.; Huang, R. Isolation, identification and genetic analysis of a murine norovirus strain. Chin. J. Virol. 2014, 30, 359–368.
|
[76] |
Zhang, Z.; Zhou, D.M. Discovery and development of antiviral drugs. J. Chin. Pharm. Sci. 2010, 19, 409–422.
|
[77] |
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center. The group of Professor Zhenjun Yang has made continuous progress in the research and development of RNA drugs and vaccines. J. Chin. Pharm. Sci. 2021, 30, 934–936.
|
[1] | Yuxuan Shen, Tianchang Wang, Hua Qiao, Qing Liang, Jingru Lv, Qing Xia. Modulation of tRNAGln decoding efficacy by metal ion binding and glutamine supply [J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(1): 28-40. |
[2] | Zhe Li, Xiaosui Luo, Abid Naeem, Qiong Li, Yao Zhang, Yongmei Guan, Lihua Chen, Weifeng Zhu, Zhengji Jin, Yi Feng, Liangshan Ming. Recent developments in the physical structure of solid formulations: a comprehensive review [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(10): 877-905. |
[3] | Jia Ge, Longfei Chen, Xiaoyan Nie, Jing Chen. Analysis of patent development status of lipid nanoparticle delivery system for mRNA vaccines [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(2): 112-121. |
[4] | Fanfan Xu, Huiping Gong, Zengqiang Liu, Qian Wu. Clinical efficacy and safety of levosimendan in patients with peripartum cardiomyopathy [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(2): 138-144. |
[5] | Yingqiu Tu, Tiantian Xu, Hongwei Peng, Zhangren Chen, Xin Lai, Qing Wan, Decheng Pan, Jie Zhang. The analysis and improvements of pharmacist-led parenteral nutrition prescription review strategies [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(2): 142-152. |
[6] | Ling Zhang, Wei Chen, Ningning Yao, Shuzeng Hou, Zhiwei Meng, Yi Kong, Chenzhong Liao, Zhouling Xie. Discovery of novel aspartate derivatives as highly potent and selective FXIa inhibitors [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(10): 727-737. |
[7] | Wen Jiang, Yilin Wei, Qing Wen, Gexin Shi, Hengli Zhao. Metadoxine inhibits the infiltration of macrophages and neutrophils into liver tissue in acute alcoholic liver injury [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(1): 47-54. |
[8] | Tong Wu, Xiao Du, Jiannong Wang, Liangyu Liu, Yuke Yang. Two new glycoalkaloids from Solanum lyratum Thunb. [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(6): 518-523. |
[9] | Xin Dong, Hong Wang, Feixiang Ma, Jianping Gao, Shizhong Chen, Peifeng Xue. A strategy for structure-activity relationship study on antioxidants in Echinops latifolius Tausch extracts by online HPLC-radical scavenging detection coupled with ESI-IT-TOF-MSn [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(4): 267-279. |
[10] | Zeqi Zhou, Xiangbin Wang, Xiqing Zhang, Yuan Zhang, Yankai Fu, Zhixian Wang, Yan Su, He Wang, Meng Xiao, Changxiao Liu. Significance of neutralizing antibodies in COVID-19 therapy: progress and prospect [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(2): 87-106. |
[11] | Jiquan Liu, Yu Wang, Jianing Liu, Xin Liu, Runli He. A comparative study on different multiple cropping patterns of Bupleurum chinense [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(2): 169-178. |
[12] | State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center. The group of Professor Zhenjun Yang has made continuous progress in the research and development of RNA drugs and vaccines [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(11): 934-936. |
[13] | Peili Jiao, Yiyan Li, Xing Wu, Yuxi Wang, Beibei Mao, Hongwei Jin, Lihe Zhang, Liangren Zhang, Zhenming Liu. Structure-based design and biological evaluation of novel mTOR inhibitors as potential anti-cervical agents [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(9): 603-616. |
[14] | Eric Wei Chiang Chan, Oi Yoon Michelle Soo, Yong Hui Tan, Siu Kuin Wong, Hung Tuck Chan. Nobiletin and tangeretin (citrus polymethoxyflavones): an overview on their chemistry, pharmacology and cytotoxic activities against breast cancer [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(7): 443-454. |
[15] | Hua Deng, Chao Gao, Dengguo Wei, Sisi Liu. Virtual screening for triple-negative breast cancer cell inhibitors based on telomere G-quadruplex structure [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(6): 383-389. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||