Journal of Chinese Pharmaceutical Sciences ›› 2021, Vol. 30 ›› Issue (2): 87-106.DOI: 10.5246/jcps.2021.02.008
• Review • Next Articles
Zeqi Zhou1,2,*(), Xiangbin Wang3,*(), Xiqing Zhang1,2, Yuan Zhang1,2, Yankai Fu1,2, Zhixian Wang1,2, Yan Su1,2, He Wang1,2, Meng Xiao4,5, Changxiao Liu6,*()
Received:
2020-12-10
Revised:
2020-12-24
Accepted:
2021-01-27
Online:
2021-02-28
Published:
2021-02-28
Contact:
Zeqi Zhou, Xiangbin Wang, Changxiao Liu
About author:
Changxiao Liu, pharmacologist, pharmacokinetic expert, Academician of Chinese Academy of Engineering, researcher, doctoral supervisor. He graduated from Beijing Medical College in 1965 with a bachelor's degree. He is currently the dean of School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, director of State Key Laboratory of Drug Release Technology and Pharmacodynamics of Tianjin Pharmaceutical Research Institute, and has served as the chairman of Drug Metabolism Professional Committee of Chinese Pharmacological Society. One of the pioneers and leaders of pharmacokinetics in China. |
Supporting:
Zeqi Zhou, Xiangbin Wang, Xiqing Zhang, Yuan Zhang, Yankai Fu, Zhixian Wang, Yan Su, He Wang, Meng Xiao, Changxiao Liu. Significance of neutralizing antibodies in COVID-19 therapy: progress and prospect[J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(2): 87-106.
[1] |
Cao, Y.L.; Su, B.; Guo, X.H.; Sun, W.J.; Deng, Y.Q.; Bao, L.L.; Zhu, Q.Y.; Zhang, X.; Zheng, Y.H.; Geng, C.Y.; Chai, X.R.; He, R.S.; Li, X.F.; Lv, Q.; Zhu, H.; Deng, W.; Xu, Y.F.; Wang, Y.J.; Xie, X.S. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells. Cell. 2020, 182, 73–84.e16.
|
[2] |
Zhou, Z.; Wang, X.; Fu, Y.; Zhang, X.; Liu, C. Letter to the editor: Neutralizing antibodies for the treatment of COVID-19. Acta Pharm. Sin. B. 2021, 11, 304–307.
|
[3] |
Davies, N.G.; Barnard, R.C.; Jarvis, C.I.; Kucharski, A.J.; Munday, J.; Pearson, C.A.B. Estimated transmissibility and severity of novel SARS-CoV-2 Variant of Concern 202012/01 in England. medRxiv. [Preprint.]. December. 24, 2020 [accessed 2020 December 30]. Available from: https://www.medrxiv.org/content/10.1101/2020.12.24. 20248822v1.
|
[4] |
Zhu, N.; Zhang, D.Y.; Wang, W.L.; Li, X.W.; Yang, B.; Song, J.D.; Zhao, X.; Huang, B.Y.; Shi, W.F.; Lu, R.J.; Niu, P.H.; Zhan, F.X.; Ma, X.J.; Wang, D.Y.; Xu, W.B.; Wu, G.Z.; Gao, G.F.; Tan, W.J. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733.
|
[5] |
Forster, P.; Forster, L.; Renfrew, C.; Forster, M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc. Natl. Acad. Sci. USA. 2020, 117, 9241–9243.
|
[6] |
Liu, X.; Wang, X.J. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J. Genet. Genom. 2020, 47, 119–121.
|
[7] |
Zou, X.; Chen, K.; Zou, J.W.; Han, P.Y.; Hao, J.; Han, Z.G. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front. Med. 2020, 14, 185–192.
|
[8] |
Wang, C.Y.; Li, W.T.; Drabek, D.; Okba, N.M.A.; van Haperen, R.; Osterhaus, A.D.M.E.; van Kuppeveld, F.J.M.; Haagmans, B.L.; Grosveld, F.; Bosch, B.J. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat. Commun. 2020, 11, 2251.
|
[9] |
Jia, Y.; Shen, G.; Nguyen, S.; Zhang, Y.; Huang, K.S.; Ho, H.Y.; Hor, W.S.; Yang, C.H.; Bruning, John B. Li, C.D. Wang, W.L. Analysis of the mutation dynamics of SARS-CoV-2 reveals the spread history and emergence of RBD mutant with lower ACE2 binding affinity. bioRxiv. [Preprint.]. April 9, 2020 [accessed 2020 May 5] Available from: https://www.biorxiv.org/content/10.1101/2020.04.09.034942v2.
|
[10] |
Shen, C.G.; Wang, Z.Q.; Zhao, F.; Yang, Y.; Li, J.X.; Yuan, J.; Wang, F.X.; Li, D.L.; Yang, M.H.; Xing, L.; Wei, J.L.; Xiao, H.X.; Yang, Y.; Qu, J.X.; Qing, L.; Chen, L.; Xu, Z.X.; Peng, L.; Li, Y.J.; Zheng, H.X.; Chen, F.; Huang, K.; Jiang, Y.J.; Liu, D.J.; Zhang, Z.; Liu, Y.X.; Liu, L. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA. 2020, 323, 1582–1589.
|
[11] |
General Office of the National Health Commission of PRC [Internet]. The Novel Coronavirus Pneumonia Convalescent Plasma Treatment Plan (Trial Version 2). [cited 2020 Feb 5]. Available from: http://www.gov.cn/zhengce/zhengceku/2020-03/05/content 5487145.htm.
|
[12] |
Ravi, N.; Cortade, D.L.; Ng, E.; Wang, S.X. Diagnostics for SARS-CoV-2 detection: a comprehensive review of the FDA-EUA COVID-19 testing landscape. Biosens. Bioelectron. 2020, 165, 112454.
|
[13] |
Panda, S.; Ravindran, B. Isolation of human PBMCs. Bio-protocol. 2013, 3. DOI:10.21769/bioprotoc.323.
|
[14] |
Gautam, A.; Donohue, D.; Hoke, A.; Miller, S.A.; Srinivasan, S.; Sowe, B.; Detwiler, L.; Lynch, J.; Levangie, M.; Hammamieh, R.; Jett, M. Investigating gene expression profiles of whole blood and peripheral blood mononuclear cells using multiple collection and processing methods. PLoS One. 2019, 14, e0225137.
|
[15] |
Shui, X.; Huang, J.; Li, Y.H.; Xie, P.L.; Li, G.C. Construction and selection of human Fab antibody phage display library of liver cancer. Hybridoma(Larchmt). 2009, 28, 341–347.
|
[16] |
Mulangu, S.; Dodd, L.E.; Davey, R.T.; Tshiani Mbaya, O.; Proschan, M.; Mukadi, D.; Lusakibanza Manzo, M.; Nzolo, D.; Tshomba Oloma, A.; Ibanda, A.; Ali, R.; Coulibaly, S.; Levine, A.C.; Grais, R.; Diaz, J.; Lane, H.C.; Muyembe-Tamfum, J.J.; Group, P.W.; Sivahera, B.; Camara, M.; Kojan, R.; Walker, R.; Dighero-Kemp, B.; Cao, H.; Mukumbayi, P.; Mbala-Kingebeni, P.; Ahuka, S.; Albert, S.; Bonnett, T.; Crozier, I.; Duvenhage, M.; Proffitt, C.; Teitelbaum, M.; Moench, T.; Aboulhab, J.; Barrett, K.; Cahill, K.; Cone, K.; Eckes, R.; Hensley, L.; Herpin, B.; Higgs, E.; Ledgerwood, J.; Pierson, J.; Smolskis, M.; Sow, Y.; Tierney, J.; Sivapalasingam, S.; Holman, W.; Gettinger, N.; Vallée, D.; Nordwall, J.; Team, P.C.S. A randomized, controlled trial of Ebola virus disease therapeutics. N. Engl. J. Med. 2019, 381, 2293–2303.
|
[17] |
Levine, M.M. Monoclonal antibody therapy for Ebola virus disease. N. Engl. J. Med. 2019, 381, 2365–2366.
|
[18] |
AstraZeneca [Internet]. Our priorities in responding to the COVID-19 outbreak. [cited 2020 Feb 5]. Available from: https://www.astrazeneca.com/media-centre/articles/2020/ our-update-on-COVID-19. html.
|
[19] |
AstraZeneca [Internet]. Researching antibodies to target COVID-19. [cited 2020 Feb 5]. Available from: https://www.astrazeneca.com/media-centre/articles/2020/researching-antibodies-to-target-COVID-19.html#!
|
[20] |
Adaptive[Internet]. Adaptive Biotechnologies and Microsoft expand partnership to decode COVID-19 immune response and provide open data access. [cited 2020 Feb 5]. Available from:https://investors.adaptivebiotech.com/news-releases/news-release-details/adaptive-biotechnologies-and-microsoft-expand-partnership-decode.
|
[21] |
Amgen [Internet]. Amgen And Adaptive Biotechnologies Announce Strategic Partnership To Develop A Therapeutic To Prevent Or Treat COVID-19. [cited 2020 Feb 5]. Available from: https://www.amgen.com/media/news-releases/2020/04/amgen-and-adaptive-biotechnologies-announce-strategic-partnership-to-develop-a-therapeutic-to-prevent-or-treat-COVID-19/.
|
[22] |
Prnasia [Internet]. Pharm Biotechnology and Vir Biotechnology have reached a global research agreement on novel Coronavirus Antibody. [cited 2020 Feb 5]. Available from: https://www.prnasia.com/story/273436-1.shtml.
|
[23] |
GSK [Internet]. GSK and Vir Biotechnology enter collaboration to find coronavirus solutions. [cited 2020 Feb 5]. Available from:https://www.gsk.com/en-gb/media/press-releases/gsk-and-vir-biotechnology-enter-collaboration-to-find-coronavirus-solutions/.
|
[24] |
Fierce [Internet]. Samsung scores $362M deal to help Vir scale up COVID-19 antibody production. [cited 2020 Feb 5]. Available from: https://www.fiercepharma.com/manufacturing/vir-inks-deal-samsung-to-scale-up-COVID-19-antibody-manufacturing.
|
[25] |
Ju B.; Zhang Q.; Ge X.; Wang R.; Yu J.; Shan S. Potent human neutralizing antibodies elicited by SARS-CoV-2 infection. ChemRxiv. [Preprint.] March.21, 2020. [accessed 2020 April 5]. Available from: https://www.biorxiv.org/content/10.1101/2020.03.21.990770v2.
|
[26] |
Briibio [Internet]. Tsinghua University -the Third People’s Hospital of Shenzhen Municipality of has established cooperation with Tengshengbo to jointly develop whole-human monoclonal neutralizing antibody against COVID-19. [cited 2020 Feb 5]. Available from: https://cn.briibio.com/news/57.html.
|
[27] |
Junshipharma [Internet]. Junshi Biology and Institute of Microbiology, CAS. Jointly developed Novel Coronavirus Neutralizing Antibody. [cited 2020 Feb 5]. Available from: http://www.junshipharma.com/News.html.
|
[28] |
Chi, X.; Yan, R.; Zhang, J.; Zhang, G.; Zhang, Y.; Hao, M.; Zhang, Z.; Fan, P.; Dong, Y.; Yang, Y.; Chen, Z.; Guo, Y.; Zhang, J.; Li, Y.; Song, X.; Chen, Y.; Xia, L.; Fu, L.; Hou, L.; Xu, J.; Yu, C.; Li, J.; Zhou, Q.; Chen, W. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science. 2020, 369, 650–655.
|
[29] |
Wang, Q.H.; Zhang, Y.F.; Wu, L.L.; Niu, S.; Song, C.L.; Zhang, Z.Y.; Lu, G.W.; Qiao, C.P.; Hu, Y.; Yuen, K.Y.; Wang, Q.S.; Zhou, H.; Yan, J.H.; Qi, J.X. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020, 181, 894–904.e9.
|
[30] |
Watanabe, Y.; Allen, J.D.; Wrapp, D.; McLellan, J.S.; Crispin, M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science. 2020, 369, 330–333.
|
[31] |
Zhang, Y.; Zhao, W.J.; Mao, Y.H.; Wang, S.S.; Yang, H. Site-specific N-glycosylation characterization of recombinant SARS-CoV-2 spike proteins using high-resolution mass spectrometry. 2020.
|
[32] |
Chi, X.; Yan, R.; Zhang, J.; Zhang, G.; Zhang, Y.; Hao, M.; Zhang, Z.; Fan, P.; Dong, Y.; Yang, Y.; Chen, Z.; Guo, Y.; Zhang, J.; Li, Y.; Song, X.; Chen, Y.; Xia, L.; Fu, L.; Hou, L.; Xu, J.; Yu, C.; Li, J.; Zhou, Q.; Chen, W. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science. 2020, 369, 650–655.
|
[33] |
Zhang, B.; Zhou, X.; Zhu, C.; Song, Y.; Feng, F.; Qiu, Y.; Feng, J.; Jia, Q.; Song, Q.; Zhu, B.; Wang, J. Immune phenotyping based on the neutrophil-to-lymphocyte ratio and IgG level predicts disease severity and outcome for patients with COVID-19. Front Mol Biosci 2020, 7, 157.
|
[34] |
Baxt, B.; Mason, P.W. Foot-and-mouth disease virus undergoes restricted replication in macrophage cell cultures following fc receptor-mediated adsorption. Virology. 1995, 207, 503–509.
|
[35] |
Wang, S.; Peng, Y.; Wang, R.; Jiao, S.; Wang, M.; Huang, W.; Shan, C.; Jiang, W.; Li, Z.; Gu, C.; Chen, B.; Hu, X.; Yao, Y.; Min, J.; Zhang, H.; Chen, Y.; Gao, G.; Tang, P.; Li, G.; Wang, A.; Wang, L.; Zhang, J.; Chen, S.; Gui, X.; Yuan, Z.; Liu, D. Characterization of neutralizing antibody with prophylactic and therapeutic efficacy against SARS-CoV-2 in rhesus monkeys. Nat. Commun. 2020, 11, 5752.
|
[36] |
Wu, F.; Yan, R.; Liu, M.; Liu, Z.; Wang, Y.; Luan, D. Antibody-dependent enhancement (ADE) of SARS-CoV-2 infection in recovered COVID-19 patients: studies based on cellular and structural biology analysis. medRxiv. [Preprint.]. October 13, 2020.[accessed 2020 October 30]. Available from: https://www.medrxiv.org/content/10.1101/ 2020.10.08.20209114v1.
|
[37] |
Zhou, Y.J.; Liu, Z.Z.; Li, S.B.; Xu, W.; Zhang, Q.Q.; Silva, I.T.; Li, C.; Wu, Y.L.; Jiang, Q.L.; Liu, Z.M.; Wang, Q.J.; Guo, Y.; Wu, J.B.; Gu, C.J.; Cai, X.; Qu, D.; Mayer, C.T.; Wang, X.X.; Wang, Q. Enhancement versus neutralization by SARS-CoV-2 antibodies from a convalescent donor associates with distinct epitopes on the RBD. Cell Rep. 2021, 34, 108699.
|
[38] |
Liu, Y.; Tuck Soh, W.; Tada, A.; Arakawa, A.; Matsuoka, S.; Nakayama, E. An infectivity-enhancing site on the SARS-CoV-2 spike protein is targeted by COVID-19 patient antibodies. medRxiv. [Preprint.]. December 18, 2020. [accessed 2020 December 30]. Available from: https://www.biorxiv.org/content/10.1101/2020.12.18. 423358v1.
|
[39] |
Li, D.; Edwards, R.; Manne, K.; Martinez, D.; Schäfer, A.; Munir Alam, S. The functions of SARS-CoV-2 neutralizing and infection-enhancing antibodies in vitro and in mice and nonhuman primates. medRxiv. [Preprint.]. January 02, 2021. [accessed 2020 January 30]. Available from: https://www.biorxiv.org/content/10.1101/2020.12.31. 424729v1.
|
[40] |
Halstead, S.B.; Mahalingam, S.; Marovich, M.A.; Ubol, S.; Mosser, D.M. Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. Lancet Infect. Dis. 2010, 10, 712–722.
|
[41] |
Cao, X. COVID-19: immunopathology and its implications for therapy. Nat. Rev. Immunol. 2020, 20, 269–270.
|
[42] |
Zhao, J.J.; Yuan, Q.; Wang, H.Y.; Liu, W.; Liao, X.J.; Su, Y.Y.; Wang, X.; Yuan, J.; Li, T.D.; Li, J.X.; Qian, S.; Hong, C.M.; Wang, F.X.; Liu, Y.X.; Wang, Z.Q.; He, Q.; Li, Z.Y.; He, B.; Zhang, T.Y.; Fu, Y.; Ge, S.X.; Liu, L.; Zhang, J.; Xia, N.S.; Zhang, Z. Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019. Clin. Infect. Dis. 2020, 71, 2027–2034.
|
[43] |
Liu, L.; Wei, Q.; Lin, Q.; Fang, J.; Wang, H.; Kwok, H.; Tang, H.; Nishiura, K.; Peng, J.; Tan, Z.; Wu, T.; Cheung, K.W.; Chan, K.H.; Alvarez, X.; Qin, C.; Lackner, A.; Perlman, S.; Yuen, K.Y.; Chen, Z. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight. 2019, 4. DOI:10.1172/jci.insight.123158.
|
[44] |
Gao, Q.; Bao, L.L.; Mao, H.Y.; Wang, L.; Xu, K.W.; Yang, M.N.; Li, Y.J.; Zhu, L.; Wang, N.; Lv, Z.; Gao, H.; Ge, X.Q.; Kan, B.; Hu, Y.L.; Liu, J.N.; Cai, F.; Jiang, D.Y.; Yin, Y.H.; Qin, C.F.; Li, J.; Gong, X.J.; Lou, X.Y.; Shi, W.; Wu, D.D.; Zhang, H.M.; Zhu, L.; Deng, W.; Li, Y.R.; Lu, J.X.; Li, C.G.; Wang, X.X.; Yin, W.D.; Zhang, Y.J.; Qin, C. Development of an inactivated vaccine candidate for SARS-CoV-2. Science. 2020, 369, 77–81.
|
[45] |
Rogers, T.F.; Zhao, F.; Huang, D.; Beutler, N.; Burns, A.; He, W.T.; Limbo, O.; Smith, C.; Song, G.; Woehl, J.; Yang, L.; Abbott, R.K.; Callaghan, S.; Garcia, E.; Hurtado, J.; Parren, M.; Peng, L.; Ramirez, S.; Ricketts, J.; Ricciardi, M.J.; Rawlings, S.A.; Wu, N.C.; Yuan, M.; Smith, D.M.; Nemazee, D.; Teijaro, J.R.; Voss, J.E.; Wilson, I.A.; Andrabi, R.; Briney, B.; Landais, E.; Sok, D.; Jardine, J.G.; Burton, D.R. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science. 2020, 369, 956–963.
|
[46] |
Cao, Y.L.; Su, B.; Guo, X.H.; Sun, W.J.; Deng, Y.Q.; Bao, L.L.; Zhu, Q.Y.; Zhang, X.; Zheng, Y.H.; Geng, C.Y.; Chai, X.R.; He, R.S.; Li, X.F.; Lv, Q.; Zhu, H.; Deng, W.; Xu, Y.F.; Wang, Y.J.; Xie, X.S. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells. Cell. 2020, 182, 73–84.e16.
|
[47] |
Wu, Y.; Wang, F.; Shen, C.; Peng, W.; Li, D.; Zhao, C. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science. 2020, 368, 1274–1278.
|
[48] |
Liu, X.; Gao, F.; Gou, L.; Chen, Y.; Gu, Y.; Ao, L. Neutralizing Antibodies Isolated by a site-directed Screening have Potent Protection on SARS-CoV-2 Infection. ChemRxiv. [Preprint.] May 04, 2020. [accessed 2020 June 14]. Available from: https://www.biorxiv.org/content/ 10.1101/2020.05.03.074914v2.
|
[49] |
Brouwer, P.J.M.; Caniels, T.G.; van der Straten, K.; Snitselaar, J.L.; Aldon, Y.; Bangaru, S.; Torres, J.L.; Okba, N.M.A.; Claireaux, M.; Kerster, G.; Bentlage, A.E.H.; van Haaren, M.M.; Guerra, D.; Burger, J.A.; Schermer, E.E.; Verheul, K.D.; van der Velde, N.; van der Kooi, A.; van Schooten, J.; van Breemen, M.J.; Bijl, T.P.L.; Sliepen, K.; Aartse, A.; Derking, R.; Bontjer, I.; Kootstra, N.A.; Wiersinga, W.J.; Vidarsson, G.; Haagmans, B.L.; Ward, A.B.; de Bree, G.J.; Sanders, R.W.; van Gils, M.J. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science. 2020, 369, 643–650.
|
[50] |
Chi, X.; Yan, R.; Zhang, J.; Zhang, G.; Zhang, Y.; Hao, M.; Zhang, Z.; Fan, P.; Dong, Y.; Yang, Y.; Chen, Z.; Guo, Y.; Zhang, J.; Li, Y.; Song, X.; Chen, Y.; Xia, L.; Fu, L.; Hou, L.; Xu, J.; Yu, C.; Li, J.; Zhou, Q.; Chen, W. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science. 2020, 369, 650–655.
|
[51] |
Wang, P.; Liu, L.; Nair, M.S.; Yin, M.T.; Luo, Y.; Wang, Q. SARS-CoV-2 neutralizing antibody responses are more robust in patients with severe disease. Emerg. Microbes. Infect. 2020, 9, 2091–2093.
|
[52] |
Liu, L.; Wang, P.; Nair, M.S.; Yu, J.; Rapp, M.; Wang, Q.; Luo, Y.; Chan, J.F.; Sahi, V.; Figueroa, A.; Guo, X.V.; Cerutti, G.; Bimela, J.; Gorman, J.; Zhou, T.; Chen, Z.; Yuen, K.Y.; Kwong, P.D.; Sodroski, J.G.; Yin, M.T.; Sheng, Z.; Huang, Y.; Shapiro, L.; Ho, D.D. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature. 2020, 584, 450–456.
|
[53] |
Caifuhao [Internet]. US pauses Eli Lilly’s trial of a coronavirus antibody treatment over safety concerns. Health and Science, Oct 13, 2020. [cited 2020 Feb 5]. Available from: http://caifuhao.eastmoney.com/news/ 20201015093547254047210.
|
[54] |
Sun, Y.P.; Ho, M. Emerging antibody-based therapeutics against SARS-CoV-2 during the global pandemic. Antibody Ther. 2020, 3, 246–256.
|
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||