Journal of Chinese Pharmaceutical Sciences ›› 2023, Vol. 32 ›› Issue (1): 17-31.DOI: 10.5246/jcps.2023.01.002
• Original articles • Previous Articles Next Articles
Ning Ding1, Tao Zhang1, Ji Luo2, Haochen Liu1, Yu Deng1, Yongheng He2,*()
Received:
2022-09-02
Revised:
2022-11-12
Accepted:
2022-11-17
Online:
2023-01-31
Published:
2023-01-31
Contact:
Yongheng He
Supporting:
Ning Ding, Tao Zhang, Ji Luo, Haochen Liu, Yu Deng, Yongheng He. Study on the mechanism of Baishao Qiwu Decoction in the treatment of colorectal cancer based on network pharmacology and molecular docking[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(1): 17-31.
[1] |
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424.
|
[2] |
Chen, W.Q.; Li, N.; Lan, P. Chinese Guidelines for Colorectal Cancer Screening, Early Diagnosis and Early Treatment (2020, Beijing). Chin. J. Oncol. 2021, 30, 1–28.
|
[3] |
Robertson, D.J.; Ladabaum, U. Opportunities and challenges in moving from current guidelines to personalized colorectal cancer screening. Gastroenterology. 2019, 156, 904–917.
|
[4] |
Wen, X.L.; Cheng, H.B. Discussion on treating of metastasis of colorectal cancer by pathogenesis theory of cancer toxin. China J. Tradit. Chin. Med. Pharm. 2021, 36, 6497–6499.
|
[5] |
Sun, Q.; He, M.; Zhang, M.; Zeng, S.; Chen, L.; Zhao, H.; Yang, H.; Liu, M.L.; Ren, S.; Xu, H.B. Traditional Chinese medicine and colorectal cancer: implications for drug discovery. Front. Pharmacol. 2021, 12, 685002.
|
[6] |
Lin, M.S.; Yang, S.J. Research progress on traditional Chinese medicine in the treatment of colorectal cancer. Guangming J. Chin. Med. 2020, 35, 2270–2272.
|
[7] |
Song, X.P. Clinical observation of Shaoyao Decoction combined with conventional chemotherapy in treating advanced colorectal carcinoma. China’s Naturopathy. 2020, 28, 74–76.
|
[8] |
Wang, X.Y.; Saud, S.M.; Zhang, X.W.; Li, W.D.; Hua, B.J. Protective effect of Shaoyao Decoction against colorectal cancer via the Keap1-Nrf2-ARE signaling pathway. J. Ethnopharmacol. 2019, 241, 111981.
|
[9] |
Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H.H.W. Network pharmacology: curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 2022, 43, 136–150.
|
[10] |
Luo, T.T.; Lu, Y.; Yan, S.K.; Xiao, X.; Rong, X.L.; Guo, J. Network pharmacology in research of Chinese medicine formula: methodology, application and prospective. Chin. J. Integr. Med. 2020, 26, 72–80.
|
[11] |
Ru, J.L.; Li, P.; Wang, J.N.; Zhou, W.; Li, B.H.; Huang, C.; Li, P.D.; Guo, Z.H.; Tao, W.Y.; Yang, Y.F.; Xu, X.; Li, Y.; Wang, Y.H.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13.
|
[12] |
UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489.
|
[13] |
Otasek, D.; Morris, J.H.; Bouças, J.; Pico, A.R.; Demchak, B. Cytoscape Automation: empowering workflow-based network analysis. Genome Biol. 2019, 20, 185.
|
[14] |
Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Iny Stein, T.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H.; Sirota-Madi, A.; Olender, T.; Golan, Y.; Stelzer, G.; Harel, A.; Lancet, D. GeneCards Version 3: the human gene integrator. Database (Oxford). 2010, 2010, baq020.
|
[15] |
Hamosh, A.; Amberger, J.S.; Bocchini, C.; Scott, A.F.; Rasmussen, S.A. Online Mendelian inheritance in man (OMIM®): victor McKusick’s magnum opus. Am. J. Med. Genet. A. 2021, 185, 3259–3265.
|
[16] |
Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; Klein, T.E. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 2012, 92, 414–417.
|
[17] |
Zhou, Y.; Zhang, Y.T.; Lian, X.C.; Li, F.C.; Wang, C.X.; Zhu, F.; Qiu, Y.Q.; Chen, Y.Z. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res. 2021, 50, D1398–D1407.
|
[18] |
Law, V.; Knox, C.; Djoumbou, Y.; Jewison, T.; Guo, A.C.; Liu, Y.F.; Maciejewski, A.; Arndt, D.; Wilson, M.; Neveu, V.; Tang, A.; Gabriel, G.; Ly, C.; Adamjee, S.; Dame, Z.T.; Han, B.; Zhou, Y.; Wishart, D.S. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 2013, 42, D1091–D1097.
|
[19] |
Otasek, D.; Morris, J.H.; Bouças, J.; Pico, A.R.; Demchak, B. Cytoscape Automation: empowering workflow-based network analysis. Genome Biol. 2019, 20, 185.
|
[20] |
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2020, 49, D605–D612.
|
[21] |
Minoru, K.; Miho, F.; Mao, T.; Yoko, S.; Kanae, M. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361.
|
[22] |
Kim, S.; Cheng, T.J.; He, S.Q.; Thiessen, P.A.; Li, Q.L.; Gindulyte, A.; Bolton, E.E. PubChem protein, gene, pathway, and taxonomy data collections: bridging biology and chemistry through target-centric views of PubChem data. J. Mol. Biol. 2022, 434, 167514.
|
[23] |
Burley, S.K.; Bhikadiya, C.; Bi, C.X.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; di Costanzo, L.; Duarte, J.M.; Dutta, S.; Feng, Z.K.; Ganesan, S.; Goodsell, D.S.; Ghosh, S.; Green, R.K.; Guranović, V.; Guzenko, D.; Hudson, B.P.; Lawson, C.L.; Liang, Y.H.; Lowe, R.; Namkoong, H.; Peisach, E.; Persikova, I.; Randle, C.; Rose, A.; Rose, Y.; Sali, A.; Segura, J.; Sekharan, M.; Shao, C.H.; Tao, Y.P.; Voigt, M.; Westbrook, J.D.; Young, J.Y.; Zardecki, C.; Zhuravleva, M. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2020, 49, D437–D451.
|
[24] |
Pan, Z.H. Research progress of traditional Chinese medicine in treating colorectal cancer in recent ten years. Acta Chin. Med. Pharmacol. 1996, 24, 16–17.
|
[25] |
Zhao, M.M.; Gao, M.; Tian, Y.L.; Du, Y.F.; Wang, C.Y.; Xu, H.J.; Zhang, L.T.; Wang, Q. Pharmacokinetic and tissue distribution studies of paeoniflorin and albiflorin in rats after oral administration of total glycosides of paeony by HPLC-MS/MS. J. Chin. Pharm. Sci. 2014, 23, 403–411.
|
[26] |
Luo, X.P.; Yu, Z.L.; Yue, B.; Ren, J.Y.; Zhang, J.; Mani, S.; Wang, Z.T.; Dou, W. Obacunone reduces inflammatory signalling and tumour occurrence in mice with chronic inflammation-induced colorectal cancer. Pharm. Biol. 2020, 58, 886–897.
|
[27] |
Wang, H.Y.; Yu, H.Z.; Zheng, Y.L.. Research progress of anti-tumor effect of berberine. Chin. Tradit. Pat. Med. 2015, 37, 1791–1795.
|
[28] |
Lu, X.H.; Zhang, J.J.; Liang, H.; Zhao, Y.Y. Chemical constituents of angelica sinensis. J. Chin. Pharm. Sci. 2004, 13, 1–3.
|
[29] |
Jiao, Y.H.; Sun, S.H.; Xin, M.; Xu, J.J.; Jiang, J.J.; Jia, X.Q. New progress in the anti-tumor action of Scutellaria baicalensis Georgi and its active ingredients. Glob. Tradit. Chin. Med. 2021, 14, 1159–1165.
|
[30] |
Elsebai, M.F.; Mocan, A.; Atanasov, A.G. Cynaropicrin: a comprehensive research review and therapeutic potential As an anti-hepatitis C virus agent. Front. Pharmacol. 2016, 7, 472.
|
[31] |
Liu, T.Y. Cynaropicrin targeting thioredoxin reductase as a promising anti-cancer agent. LanZhou University. 2019.
|
[32] |
Zheng, D.D.; Zhu, Y.; Shen, Y.L.; Xiao, S.S.; Yang, L.H.; Xiang, Y.Q.; Dai, X.X.; Hu, W.L.; Zhou, B.; Liu, Z.G.; Zhao, H.Y.; Zhao, C.G.; Huang, X.Y.; Wang, L.X. Cynaropicrin shows antitumor progression potential in colorectal cancer through mediation of the LIFR/STATs axis. Front. Cell Dev. Biol. 2021, 8, 605184.
|
[33] |
Ponte, L.; Pavan, I.; Mancini, M.; Silva, L.; Morelli, A.; Severino, M.; Bezerra, R.; Simabuco, F. The hallmarks of flavonoids in cancer. Molecules. 2021, 26, 2029.
|
[34] |
Cui, M.Y.; Lu, A.R.; Li, J.X.; Liu, J.; Fang, Y.M.; Pei, T.L.; Zhong, X.; Wei, Y.K.; Kong, Y.; Qiu, W.Q.; Hu, Y.H.; Yang, J.; Chen, X.Y.; Martin, C.; Zhao, Q. Two types of O-methyltransferase are involved in biosynthesis of anticancer methoxylated 4´-deoxyflavones in Scutellaria baicalensis Georgi. Plant Biotechnol. J. 2021, 20, 129–142.
|
[35] |
Liu, L.; Wu, S.H.; Li, Y.Y.; Xu, X.Y.; He, S.; Wen, F.F.; Guo, N.J.; Jia, Z.Z. Correlation of HSF1, c-Jun and DPD expression in colorectal adenocarcinoma and their clinical significance. Chin. J. Clin. Exp. Pathol. 2020, 36, 1261–1268.
|
[36] |
Zuehlke, A.D.; Beebe, K.; Neckers, L.; Prince, T. Regulation and function of the human HSP90AA1 gene. Gene. 2015, 570, 8–16.
|
[37] |
Yun, C.W.; Kim, H.J.; Lim, J.H.; Lee, S.H. Heat shock proteins: agents of cancer development and therapeutic targets in anti-cancer therapy. Cells. 2019, 9, 60.
|
[38] |
Chen, E.F.; Yang, F.F.; He, H.J.; Li, Q.Q.; Zhang, W.; Xing, J.L.; Zhu, Z.Q.; Jiang, J.J.; Wang, H.; Zhao, X.J.; Liu, R.T.; Lei, L.; Dong, J.; Pei, Y.C.; Yang, Y.; Pan, J.Q.; Zhang, P.; Liu, S.Z.; Du, L.; Zeng, Y.; Yang, J. Alteration of tumor suppressor BMP5 in sporadic colorectal cancer: a genomic and transcriptomic profiling based study. Mol. Cancer. 2018, 17, 176.
|
[39] |
Zhao, X.J.; Liu, J.Z.; Liu, S.Z.; Yang, F.F.; Chen, E.F. Construction and validation of an immune-related prognostic model based on TP53 status in colorectal cancer. Cancers. 2019, 11, 1722.
|
[40] |
Xu, X.; Yao, D.Y. Expression and clinical significance of Girdin and Akt1 in colorectal carcinoma. Hebei Med. J. 2016, 38, 2259–2261, 2266.
|
[41] |
Dostert, C.; Grusdat, M.; Letellier, E.; Brenner, D. The TNF family of ligands and receptors: communication modules in the immune system and beyond. Physiol. Rev. 2019, 99, 115–160.
|
[42] |
Xu, H.; Liu, T.; Li, J.; Chen, F.; Xu, J.; Hu, L.; Jiang, L.; Xiang, Z.; Wang, X.; Sheng, J. Roburic acid targets TNF to inhibit the NF-κB signaling pathway and suppress human colorectal cancer cell growth. Front. Immunol. 2022, 13, 853165.
|
[43] |
Yang, X.L.; Sun, X.M.; Zhao, X.H.; Yang, L.J.; Shen, W.G.; Xiao, Z.S.; Guo, C.; Liu, Y.B. Expressions of IL-17E, IL-17F and their receptors in colorectal carcinoma tissue and their significances. J. Jilin Univ. Med. Ed. 2018, 44, 574–578, 696.
|
[44] |
Guo, Y.J.; Pan, W.W.; Liu, S.B.; Shen, Z.F.; Xu, Y.; Hu, L.L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med. 2020, 19, 1997–2007.
|
[45] |
Fang, J.Y.; Richardson, B.C. The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 2005, 6, 322–327.
|
[46] |
Yang, Y.; Xia, D.Q.; Wang, W. Effects of inhibitor PD98059 blocking MAPK/ERK pathway on inhibiting proliferation and promoting apoptosis of colorectal cancer cells. J. Colorectal. Anal. Surg. 2019, 25, 657–667.
|
[47] |
Moradi-Marjaneh, R.; Hassanian, S.M.; Fiuji, H.; Soleimanpour, S.; Ferns, G.; Avan, A.; Khazaei, M. Toll like receptor signaling pathway as a potential therapeutic target in colorectal cancer. J. Cell Physiol. 2018, 233, 5613–5622.
|
[48] |
Ren, Y.M.; Fang, J.Y. Toll-likereceptorfamily-relatedsignalingpathwayanditsrelationship with colorectal cancer. Tumor. 2019, 39, 589–594.
|
[1] | Mengyao Wu, Lu Liu, Peng Zhang, Lele Zhang, Yun Gong, Xiuwei Yang. Exploring the mechanism of Buxue Yimu Pills on postpartum abdominal pain through network pharmacology and experimental validation [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 691-703. |
[2] | Ping Shang, Lin Liu, Yi Fang. Investigating the mechanism of action of Gui Zhi Fu Ling Wan in the treatment of endometriosis based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 704-719. |
[3] | Gedi Zhang, Gengxin Liu, Ziyou Yan. Therapeutic efficacy evaluation and mechanism of action based on meta-analysis and network pharmacology of Li Chong Decoction (Bolus) for cancer treatment [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 720-735. |
[4] | Dongyan Wu, Xiaodan Wang, Jinmiao Chai, Qinqing Li, Yue Li, Mei Bi, Wanwei Gui, Huimin Cao. Study on the mechanism of Danggui Buxue decoction in the treatment of diabetic retinopathy based on network pharmacology and experiment [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 527-538. |
[5] | Huan Yan, Jian Wang, Hao Fu, Min Yang, Miao Qu, Zhie Fang. Discussion on the potential target and mechanism of Dachaihu Decoction in treating hyperlipidemia based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(6): 446-459. |
[6] | Mengya Wang, Kuanyou Zhang, Xin Chen, Hao Fu, Shouchun Peng. Study on the mechanism of Rhinoceros Horn and Rehmannia Decoction in the treatment of systemic lupus erythematosus based on the method of network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 351-359. |
[7] | Guangzhi Shen, Xingang Cui, Zhimin Na, Yulong Zou, Guihua Zou. A network pharmacology approach to explore the pharmacological mechanism of Epimedium brevicornum in sexual dysfunction [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 379-391. |
[8] | Min Ao, Minglan Bao, Yaxing Hou, Ying Yue, Huifang Li, Guohua Wu, Su Ri Ga La Tu. Study on the mechanism of Mongolian medicine Herba Lomatognii against acute liver injury based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 268-282. |
[9] | Yajing Li, Yawen Bai, Yu Du, Changhong Yan, Chunjie Ma, Lining Sun, Fengyue Bu, Haoyang Yan. Yu Ping Feng Powder for chronic glomerulonephritis treatment: A meta-analysis and network pharmacology study [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(12): 1006-1026. |
[10] | Zhiyong Sun, Shuli Gao, Yang Zhang, Gangqiang Xue, Zilin Yuan, Shaonan Wang. Study on the potential mechanism of Pu Gong Ying in treating breast hyperplasia based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 893-910. |
[11] | Yuqian Zhang, Haiying Niu, Yiran Jin. Network pharmacology-based strategy to investigate anticancer mechanisms of Catharanthus roseus (L.) G. Don [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 911-922. |
[12] | Daiying Zhou, Jing Chen, Zhigang Lv. Network pharmacology prediction and molecular docking-based study on the mechanism of Erigeron breviscapus in the treatment of age-related macular degeneratio [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 923-934. |
[13] | Dongsheng Wei, Xiaosheng Liu, Luzhen Li, Jiajie Qi, Yuxuan Wang, Zhe Zhang. Unraveling the biological and immunological mechanisms of safflower-danshen in the treatment of coronary atherosclerotic heart disease: a comprehensive bioinformatics and single-cell sequencing approach [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(10): 796-812. |
[14] | Ipargul Hafiz, Zhaozhi Wang, Hongji He, Zhezhe Li, Mei Wang. Exploring the mechanism of Peganum harmala L. seeds on hepatocellular carcinoma based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(7): 517-529. |
[15] | Weiping Zhao, Qi Ge, Zijun Ding, Leizhi Pan, Ziqing Gu, Yang Liu, Hua Cai. Network pharmacology and metabolomics-based detection of the potential pharmacological effects of the active components in Chrysanthemum morifolium 'Chuju' [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(6): 412-428. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||