Journal of Chinese Pharmaceutical Sciences ›› 2022, Vol. 31 ›› Issue (12): 938-945.DOI: 10.5246/jcps.2022.12.079
• Original articles • Previous Articles Next Articles
Meng Tong, Wei Zhan, Chengcheng Niu, Zemei Ge, Runtao Li*(), Xin Wang*()
Received:
2022-10-12
Revised:
2022-10-26
Accepted:
2022-11-15
Online:
2022-12-27
Published:
2022-12-28
Contact:
Runtao Li, Xin Wang
Supporting:
Meng Tong, Wei Zhan, Chengcheng Niu, Zemei Ge, Runtao Li, Xin Wang. Continuous-flow, one-pot synthesis of asymmetrical aromatic ureas from acids and amines via curtius rearrangement[J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(12): 938-945.
[1] |
Kulkarni, A.R.; Garai, S.; Thakur, G.A. Scalable, one-pot, microwave-accelerated tandem synthesis of unsymmetrical urea derivatives. . J. Org. Chem. 2016, 82, 992–999.
|
[2] |
Takeda, K.; Mitsunami, K.; Muso, E.; Kinoshita, M.; Sasayama, S.; Nakagawa, M. Efficacy of celiprolol in the treatment of hypertension in the elderly: an open-label study. Curr. Ther. Res. 2000, 61, 49–60.
|
[3] |
Flick, A.C.; Ding, H.X.; Leverett, C.A.; Kyne, R.E. Jr, Liu, K.K.C.; Fink, S.J.; O'Donnell, C.J. Synthetic approaches to the new drugs approved during 2015. J. Med. Chem. 2017, 60, 6480–6515.
|
[4] |
Flick, A.; Ding, H.X.; Leverett, C.A.; Fink, S.J.; O’Donnell, C.J. Synthetic approaches to new drugs approved during 2016. J. Med. Chem. 2018, 61, 7004–7031.
|
[5] |
Venkatesan, A.M.; Dehnhardt, C.M.; Delos Santos, E.; Chen, Z.C.; Dos Santos, O.; Ayral-Kaloustian, S.; Khafizova, G.; Brooijmans, N.; Mallon, R.; Hollander, I.; Feldberg, L.; Lucas, J.; Yu, K.; Gibbons, J.; Abraham, R.T.; Chaudhary, I.; Mansour, T.S. Bis(morpholino-1,3,5-triazine) derivatives: potent adenosine 5'-triphosphate competitive phosphatidylinositol-3-kinase/mammalian target of rapamycin inhibitors: discovery of compound 26 (PKI-587), a highly efficacious dual inhibitor. J. Med. Chem. 2010, 53, 2636–2645.
|
[6] |
He, L.M.; Cui, K.D.; Song, Y.F.; Zhang, Z.Q.; Li, B.X.; Mu, W.; Liu, F. A precisely targeted application strategy of dipping young cucumber fruit in fungicide to control cucumber gray mold. Pest Manag. Sci. 2018, 74, 2432–2437.
|
[7] |
Abdou, I.; Bouhidel, K.E. Electrochemical behavior and analysis of monuron herbicide in water using voltammetric methods and pre- activated carbon paste electrode. J. Fundamental. Appl. Sci. 2019, 11, 11–24.
|
[8] |
Xu, H.; Zuend, S.J.; Woll, M.G.; Tao, Y.; Jacobsen, E.N. Asymmetric cooperative catalysis of strong Brønsted acid-promoted reactions using chiral ureas. Science 2010, 327, 986–990.
|
[9] |
Hocquet, A.; Tohier, J.; Fournier, J. Synthesis and spectroscopic study of plant growth regulators phenylpyridylureas: an "agrorganic" undergraduate laboratory experiment. J. Chem. Educ. 1994, 71, 1092.
|
[10] |
Stanovnik, B.; Tišler, M.; Golob, V.; Hvala, I.; Nikolić, O. Heteroacyl azides as acylating agents for aromatic or heteroaromatic amines. J. Heterocycl. Chem. 1980, 17, 733–736.
|
[11] |
Arrieta, A.; Palomo, C. Phosphorous in organic chemistry. Part II: a new method of preparing N-N' disubstituted aryl ureas using phenyl N'-phenylphosphoramidoazidate reagent. Tetrahedron Lett. 1981, 22, 1729–1732.
|
[12] |
Kulkarni, A.R.; Garai, S.; Thakur, G.A. Scalable, one-pot, microwave-accelerated tandem synthesis of unsymmetrical urea derivatives. J. Org. Chem. 2016, 82, 992–999.
|
[13] |
Han, C.; Porco, J.A. Jr. Synthesis of carbamates and ureas using Zr(IV)-catalyzed exchange processes. Org. Lett. 2007, 9, 1517–1520.
|
[14] |
Spyropoulos, C.; Kokotos, C.G. One-pot synthesis of ureas from boc-protected amines. J. Org. Chem. 2014, 79, 4477–4483.
|
[15] |
Padiya, K.J.; Gavade, S.; Kardile, B.; Tiwari, M.; Bajare, S.; Mane, M.; Gaware, V.; Varghese, S.; Harel, D.; Kurhade, S. Unprecedented "In water" imidazole carbonylation: paradigm shift for preparation of urea and carbamate. Org. Lett. 2012, 14, 2814–2817.
|
[16] |
vom Stein, T.; Meuresch, M.; Limper, D.; Schmitz, M.; Hölscher, M.; Coetzee, J.; Cole-Hamilton, D.J.; Klankermayer, J.; Leitner, W. Highly versatile catalytic hydrogenation of carboxylic and carbonic acid derivatives using a Ru-triphos complex: molecular control over selectivity and substrate scope. J. Am. Chem. Soc. 2014, 136, 13217–13225.
|
[17] |
Yu, S.; Haight, A.; Kotecki, B.; Wang, L.; Lukin, K.; Hill, D.R. Synthesis of a TRPV1 receptor antagonist. J. Org. Chem. 2009, 74, 9539–9542.
|
[18] |
Carnaroglio, D.; Martina, K.; Palmisano, G.; Penoni, A.; Domini, C.; Cravotto, G. One-pot sequential synthesis of isocyanates and urea derivatives via a microwave-assisted Staudinger-aza-Wittig reaction. Beilstein J. Org. Chem. 2013, 9, 2378–2386.
|
[19] |
Baumann, M.; Moody, T.S.; Smyth, M.; Wharry, S. A perspective on continuous flow chemistry in the pharmaceutical industry. Org. Process. Res. Dev. 2020, 24, 1802–1813.
|
[20] |
Bogdan, A.R.; Dombrowski, A.W. Emerging trends in flow chemistry and applications to the pharmaceutical industry. J. Med. Chem. 2019, 62, 6422–6468.
|
[21] |
Chapman, M.R.; Cosgrove, S.C.; Turner, N.J.; Kapur, N.; Blacker, A.J. Highly productive oxidative biocatalysis in continuous flow by enhancing the aqueous equilibrium solubility of oxygen. Angew. Chem. Int. Ed Engl. 2018, 57, 10535–10539.
|
[22] |
Rullière, P.; Benoit, G.; Allouche, E.M.D.; Charette, A.B. Safe and facile access to nonstabilized diazoalkanes using continuous flow technology. Angew. Chem. Int. Ed Engl. 2018, 57, 5777–5782.
|
[23] |
Watanabe, S.; Nakaya, N.; Akai, J.; Kanaori, K.; Harada, T. Silica-supported catalyst for enantioselective arylation of aldehydes under batch and continuous-flow conditions. Org. Lett. 2018, 20, 2737–2740.
|
[24] |
Seo, H.; Katcher, M.H.; Jamison, T.F. Photoredox activation of carbon dioxide for amino acid synthesis in continuous flow. Nat. Chem. 2017, 9, 453–456.
|
[25] |
Chen, Y.S.; Gutmann, B.; Kappe, C.O. Continuous-flow electrophilic amination of arenes and Schmidt reaction of carboxylic acids utilizing the superacidic trimethylsilyl azide/triflic acid reagent system. J. Org. Chem. 2016, 81, 9372–9380.
|
[26] |
Plutschack, M.B.; Pieber, B.; Gilmore, K.; Seeberger, P.H. The hitchhiker's Guide to flow chemistry. Chem. Rev. 2017, 117, 11796–11893.
|
[27] |
Britton, J.; Raston, C.L. Multi-step continuous-flow synthesis. Chem. Soc. Rev. 2017, 46, 1250–1271.
|
[28] |
Newman, S.G.; Jensen, K.F. The role of flow in green chemistry and engineering. Green Chem. 2013, 15, 1456–1472.
|
[29] |
Marsini, M.A.; Buono, F.G.; Lorenz, J.C.; Yang, B.S.; Reeves, J.T.; Sidhu, K.; Sarvestani, M.; Tan, Z.L.; Zhang, Y.D.; Li, N.; Lee, H.; Brazzillo, J.; Nummy, L.J.; Chung, J.C.; Luvaga, I.K.; Narayanan, B.A.; Wei, X.D.; Song, J.J.; Roschangar, F.; Yee, N.K.; Senanayake, C.H. Development of a concise, scalable synthesis of a CCR1 antagonist utilizing a continuous flow Curtius rearrangement. Green Chem. 2017, 19, 1454–1461.
|
[30] |
Filipponi, P.; Ostacolo, C.; Novellino, E.; Pellicciari, R.; Gioiello, A. Continuous flow synthesis of thieno[2, 3-c]isoquinolin-5(4H)-one scaffold: a valuable source of PARP-1 inhibitors. Org. Process Res. Dev. 2014, 18, 1345–1353.
|
[31] |
Ishikawa, H.; Bondzic, B.P.; Hayashi, Y. Synthesis of (-)-oseltamivir by using a microreactor in the curtius rearrangement. Eur. J. Org. Chem. 2011, 2011, 6020–6031.
|
[32] |
Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N.; Smith, C.D.; Tierney, J.P. A modular flow reactor for performing Curtius rearrangements as a continuous flow process. Org. Biomol. Chem. 2008, 6, 1577–1586.
|
[33] |
Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N.; Smith, C.D. Azide monoliths as convenient flow reactors for efficient Curtius rearrangement reactions. Org. Biomol. Chem. 2008, 6, 1587–1593.
|
[34] |
Zhan, W.; Ji, L.; Ge, Z.M.; Wang, X.; Li, R.T. A continuous-flow synthesis of primary amides from hydrolysis of nitriles using hydrogen peroxide as oxidant. Tetrahedron. 2018, 74, 1527–1532.
|
[35] |
Zhan, W.; Tong, M.; Ji, L.; Zhang, H.; Ge, Z.M.; Wang, X.; Li, R.T. Continuous-flow synthesis of nitriles from aldehydes via Schmidt reaction. Chin. Chem. Lett. 2019, 30, 973–976.
|
[1] | Changping Lin, Sanyue Wang, Yunguo Xue, Youliu Yu. The effects of midazolam combined with dezocine on laparoscopic appendectomy [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(3): 207-213. |
[2] | Yuanchao Zhu, Chen Chen, Xin Hu. Retrospective analysis of biapenem treatment for bacterial infection in very elderly patients [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(2): 145-152. |
[3] | Xing Sun, Changyong Yang, Kan Lin, Caihong Zhou, Chen Liao, Limin Zhang, Xinsheng Jin, Langyong Mao, Hua Ying, Weikang Tao, Lianshan Zhang. Camrelizumab (SHR-1210), a humanized anti-PD-1 IgG4 mAb, exhibits superior anti-tumor activity and a favorable safety profile in preclinical studies [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(5): 393-408. |
[4] | Lanlan Hu, Juan Zhou, Huan Zou, Yue Zhang, Jianlin Tang. Pharmacokinetics, safety and bioequivalence of intravenous and oral formulations of the antiepileptic drug levetiracetam in healthy Chinese volunteers [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(11): 777-786. |
[5] | Ruirui Xiao, Xiuqin Xu, Lei Sun, Xiaolei Fang, Peng Xiao. Safety of ivabradine, a heart rate lowering drug: a systematic review and meta-analysis [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(5): 379-389. |
[6] | Zhiyan Lin, Huaiping Tian, Fang Li, Liping Qin, Xin Zhang, Xiaotong Lu. The clinical effect and safety evaluation of Shugan Quzhi capsule in the treatment of adult simple obesity [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(12): 890-894. |
[7] | Baomin Wang, Linguang Zhou, Bin Li, Song Yang, Bin Jiang. Risk management of drug products in FDA: the development and implication [J]. Journal of Chinese Pharmaceutical Sciences, 2015, 24(6): 405-411. |
[8] | Xiao Luo, Hong Shao. Clinical efficacy and safety of intravenous itraconazole in patients with invasive fungal infections in emergency intensive care unit [J]. Journal of Chinese Pharmaceutical Sciences, 2015, 24(10): 678-682. |
[9] | Kongcai Zhu, Wei Xue, Panpan Xie, Aixin Shi, Xin Hu, Yang Li, Min Li, Bei Yan, Jiamin Chi, Fan Dong, Kang Li, Guoying Cao. Safety and tolerability of isradipine in Phase I trial in Chinese population [J]. Journal of Chinese Pharmaceutical Sciences, 2014, 23(3): 194-198. |
[10] | Yi Liu, Yifan Zhang, Qian Wang, Wei Yang, Xiaoyan Chen, Shan Jing, Libo Zhao, Chunyan Zhang, Lihui Wei, Xiaoping Li, Wanyu Feng, Dafang Zhong*, Yi Fang*. Bioequivalence and safety study of letrozole tablet in healthy Chinese postmenopausal women volunteers [J]. , 2013, 22(2): 190-196. |
[11] | Xiao-Wu Huang1, Yi-Lin Lv2, Lu-Wen Shi3, Bin Jiang2,3* . Exploratory research on drug safety in China [J]. , 2009, 18(3): 278-282. |
[12] | SUN De-qing, NI Mei-yuan, WANG Ben-jie, GUO Rui-chen*. Safety and Tolerance of Adefovir Dipivoxil in Chinese Healthy Volunteers: A PhaseⅠRandomized and Open-Label Trial [J]. , 2005, 14(4): 217-222. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||