Journal of Chinese Pharmaceutical Sciences ›› 2022, Vol. 31 ›› Issue (4): 250-263.DOI: 10.5246/jcps.2022.04.022
• Original articles • Previous Articles Next Articles
Weiwei Xie1, Xuqing Wen1, Dedong Zhang1, Yuqian Zhang1, Zhiqing Zhang1, Yiran Jin1,*(), Yingfeng Du2,*()
Received:
2021-12-04
Revised:
2021-12-31
Accepted:
2022-01-12
Online:
2022-04-30
Published:
2022-04-30
Contact:
Yiran Jin, Yingfeng Du
Supporting:
Weiwei Xie, Xuqing Wen, Dedong Zhang, Yuqian Zhang, Zhiqing Zhang, Yiran Jin, Yingfeng Du. Network pharmacology-based strategy to investigate harmacological mechanisms of Isodon serra (Maxim.) Hara for treatment of inflammatory[J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(4): 250-263.
[1] |
The Pharmacopeia Commission of People’s Republic of China, Pharmacopoeia of the People’s Republic of China, Chinese Medical Science and Technology Press, Beijing, 2010. Appendix III 26.
|
[2] |
Wan, J.; Liu, M.; Jiang, H.Y.; Yang, J.; Du, X.; Li, X.N.; Wang, W.G.; Li, Y.; Pu, J.X.; Sun, H.D. Bioactive ent-kaurane diterpenoids from Isodon serra. Phytochemistry. 2016, 130, 244–251.
|
[3] |
Wang, W.Q.; Xuan, L.J. Ent-6,7-Secokaurane diterpenoids from Rabdosia serra and their cytotoxic activities. Phytochemistry. 2016, 122, 119–125.
|
[4] |
Tang, H.M.; Chen, J.N.; Zhang, Y.; Lai, X.P.; Huang, S. Simultaneous determination of eight water-soluble compositions in Isodon serra from different origins by HPLC. Chin. J. Pharm. Anal. 2015, 35, 228–234.
|
[5] |
Sun, H.D.; Huang, S.X.; Han, Q.B. Diterpenoids from Isodon species and their biological activities. Nat. Prod. Rep. 2006, 23, 673–698.
|
[6] |
Liu, P.W.; Du, Y.F.; Zhang, X.W.; Sheng, X.N.; Shi, X.W.; Zhao, C.C.; Zhu, H.; Wang, N.; Wang, Q.; Zhang, L.T. Rapid analysis of 27 components of isodon serra by LC-ESI-MS-MS. Chromatographia. 2010, 72, 265–273.
|
[7] |
Yang, Y.S.; Sun, H.D.; Zhou, Y.P.; Ji, S.Y.; Li, M.L. Effects of three diterpenoids on tumor cell proliferation and telomerase activity. Nat. Prod. Res. 2009, 23, 1007–1012.
|
[8] |
Jin, Y.R.; Du, Y.F.; Shi, X.W.; Liu, P.W. Simultaneous quantification of 19 diterpenoids in Isodon amethystoides by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal. 2010, 53, 403–411.
|
[9] |
Huang, W.H.; Liang, Y.Y.; Wang, J.J.; Li, G.Q.; Wang, G.C.; Li, Y.L.; Chung, H.Y. Anti-angiogenic activity and mechanism of kaurane diterpenoids from Wedelia chinensis. Phytomedicine. 2016, 23, 283–292.
|
[10] |
Yang, L.; Zhang, Y.B.; Chen, L.F.; Chen, N.H.; Wu, Z.N.; Jiang, S.Q.; Jiang, L.; Li, G.Q.; Li, Y.L.; Wang, G.C. New labdane diterpenoids from Croton laui and their anti-inflammatory activities. Bioorg. Med. Chem. Lett. 2016, 26, 4687–4691.
|
[11] |
Niu, C.S.; Li, Y.; Liu, Y.B.; Ma, S.G.; Li, L.; Qu, J.; Yu, S.S. Analgesic diterpenoids from the twigs of Pieris Formosa. Tetrahedron. 2016, 72, 44–49.
|
[12] |
Liu, Z.G.; Li, Z.L.; Li, D.H.; Li, N.; Bai, J.; Zhao, F.; Meng, D.L.; Hua, H.M. Ent-Abietane-type diterpenoids from the roots of Euphorbia ebracteolata with their inhibitory activities on LPS-induced NO production in RAW 264.7 macrophages. Bioorg. Med. Chem. Lett. 2016, 26, 1–5.
|
[13] |
Tiwari, N.; Thakur, J.; Saikia, D.; Gupta, M.M. Antitubercular diterpenoids from Vitex trifolia. Phytomedicine. 2013, 20, 605–610.
|
[14] |
Chen, S.J.; Cui, M.C. Systematic understanding of the mechanism of salvianolic acid A via computational target fishing. Molecules. 2017, 22, 644.
|
[15] |
Zhai, L.; Ning, Z.W.; Huang, T.; Wen, B.; Liao, C.H.; Lin, C.Y.; Zhao, L.; Xiao, H.T.; Bian, Z.X. Cyclocarya paliurus leaves tea improves dyslipidemia in diabetic mice: a lipidomics-based network pharmacology study. Front. Pharmacol. 2018, 9, 973.
|
[16] |
Hutchinson, L.; Kirk, R. High drug attrition rates—where are we going wrong? Nat. Rev. Clin. Oncol. 2011, 8, 189–190.
|
[17] |
Hopkins, A.L. Network pharmacology. Nat. Biotechnol. 2007, 25, 1110–1111.
|
[18] |
Li, S.; Zhang, B.; Zhang, N. Network target for screening synergistic drug combinations with application to traditional Chinese medicine. BMC Syst. Biol. 2011, 5, S10.
|
[19] |
Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin. J. Nat. Med. 2013, 11, 110–120.
|
[20] |
Vitali, F.; Mulas, F.; Marini, P.; Bellazzi, R. Network-based target ranking for polypharmacological therapies. J. Biomed. Inform. 2013, 46, 876–881.
|
[21] |
Kibble, M.; Saarinen, N.; Tang, J.; Wennerberg, K.; Mäkelä, S.; Aittokallio, T. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat. Prod. Rep. 2015, 32, 1249–1266.
|
[22] |
Musyoka, T.; Bishop, Ö.T. South African abietane diterpenoids and their analogs as potential antimalarials: novel insights from hybrid computational approaches. Molecules. 2019, 24, 4036.
|
[23] |
Shaker, S.; Sang, J.; Yan, X.L.; Fan, R.Z.; Tang, G.H.; Xu, Y.K.; Yin, S. Diterpenoids from Euphorbia royleana reverse P-glycoprotein-mediated multidrug resistance in cancer cells. Phytochemistry. 2020, 176, 112395.
|
[24] |
Isca, V.M.S.; Ferreira, R.J.; Garcia, C.; Monteiro, C.M.; Dinic, J.; Holmstedt, S.; André, V.; Pesic, M.; dos Santos, D.J.V.A.; Candeias, N.R.; Afonso, C.A.M.; Rijo, P. Molecular docking studies of royleanone diterpenoids from plectranthus spp. as P-glycoprotein inhibitors. ACS Med. Chem. Lett. 2020, 11, 839–845.
|
[25] |
Bai, N.; He, K.; Zhou, Z.; Tsai, M.L.; Zhang, L.; Quan, Z.; Shao, X.; Pan, M.H.; Ho, C.T. Ent-kaurane diterpenoids from Rabdosia rubescens and their cytotoxic effects on human cancer cell lines. Planta Med. 2010, 76, 140–145.
|
[26] |
Musyoka, T.; Bishop, Ö.T. South African abietane diterpenoids and their analogs as potential antimalarials: novel insights from hybrid computational approaches. Molecules. 2019, 24, 4036.
|
[27] |
Shaker, S.; Sang, J.; Yan, X.L.; Fan, R.Z.; Tang, G.H.; Xu, Y.K.; Yin, S. Diterpenoids from Euphorbia royleana reverse P-glycoprotein-mediated multidrug resistance in cancer cells. Phytochemistry. 2020, 176, 112395.
|
[28] |
Reyes-Gordillo, K.; Shah, R.; Arellanes-Robledo, J.; Cheng, Y.; Ibrahim, J.; Tuma, P.L. Akt1 and Akt2 isoforms play distinct roles in regulating the development of inflammation and fibrosis associated with alcoholic liver disease. Cells. 2019, 8. 1337.
|
[29] |
Huang, X.F.; Cheng, W.B.; Jiang, Y.; Liu, Q.; Liu, X.H.; Xu, W.F.; Huang, H.T. A network pharmacology-based strategy for predicting anti-inflammatory targets of ephedra in treating asthma. Int. Immunopharmacol. 2020, 83, 106423.
|
[30] |
Mussard, E.; Jousselin, S.; Cesaro, A.; Legrain, B.; Lespessailles, E.; Esteve, E.; Berteina-Raboin, S.; Toumi, H. Andrographis paniculata and its bioactive diterpenoids protect dermal fibroblasts against inflammation and oxidative stress. Antioxidants. 2020, 9, 432.
|
[31] |
Lossi, L.; Cocito, C.; Alasia, S.; Merighi, A. Ex vivo imaging of active caspase 3 by a FRET-based molecular probe demonstrates the cellular dynamics and localization of the protease in cerebellar granule cells and its regulation by the apoptosis-inhibiting protein survivin. Mol. Neurodegener. 2016, 11, 34.
|
[32] |
Kozłowska, A.; Kozera, P.; Majewski, M.; Godlewski, J. Co-expression of caspase-3 or caspase-8 with galanin in the human stomach section affected by carcinoma. Apoptosis. 2018, 23, 484–491.
|
[33] |
Kunzmann, A.T.; Murray, L.J.; Cardwell, C.R.; McShane, C.M.; McMenamin, U.C.; Cantwell, M.M. PTGS2 (Cyclooxygenase-2) expression and survival among colorectal cancer patients: a systematic review. Cancer Epidemiol. Biomark. Prev. 2013, 22, 1490–1497.
|
[34] |
Körber, H.; Goericke-Pesch, S. Expression of PTGS2, PGFS and PTGFR during downregulation and restart of spermatogenesis following GnRH agonist treatment in the dog. Cell Tissue Res. 2019, 375, 531–541.
|
[35] |
Chen, X.; Vodanovic-Jankovic, S.; Johnson, B.; Keller, M.; Komorowski, R.; Drobyski, W.R. Absence of regulatory T-cell control of TH1 and TH17 cells is responsible for the autoimmune-mediated pathology in chronic graft-versus-host disease. Blood. 2007, 110, 3804–3813.
|
[36] |
Yin, X.W.; Liu, B.; Wei, H.X.; Wu, S.S.; Guo, L.J.; Xu, F.R.; Liu, T.T.; Bi, H.S.; Guo, D.D. Activation of the Notch signaling pathway disturbs the CD4+/CD8+, Th17/Treg balance in rats with experimental autoimmune uveitis. Inflamm. Res. 2019, 68, 761–774.
|
[37] |
Montfort, A.; Colacios, C.; Levade, T.; Andrieu-Abadie, N.; Meyer, N.; Ségui, B. The TNF paradox in cancer progression and immunotherapy. Front. Immunol. 2019, 10, 1818.
|
[38] |
Wu, H.Y.; Wang, W.G.; Jiang, H.Y.; Du, X.; Li, X.N.; Pu, J.X.; Sun, H.D. Cytotoxic and anti-inflammatory ent-kaurane diterpenoids from Isodon wikstroemioides. Fitoterapia. 2014, 98, 192–198.
|
[39] |
Jiang, S.; Du, J.; Kong, Q.; Li, C.; Li, Y.; Sun, H.; Pu, J.; Mao, B. A group of ent-kaurane diterpenoids inhibit hedgehog signaling and induce cilia elongation. PLoS One. 2015, 10, e0139830.
|
[40] |
Sarwar, M.S.; Xia, Y.X.; Liang, Z.M.; Tsang, S.W.; Zhang, H.J. Mechanistic pathways and molecular targets of plant-derived anticancer ent-kaurane diterpenes. Biomolecules. 2020, 10, 144.
|
[1] | Mengyao Wu, Lu Liu, Peng Zhang, Lele Zhang, Yun Gong, Xiuwei Yang. Exploring the mechanism of Buxue Yimu Pills on postpartum abdominal pain through network pharmacology and experimental validation [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 691-703. |
[2] | Ping Shang, Lin Liu, Yi Fang. Investigating the mechanism of action of Gui Zhi Fu Ling Wan in the treatment of endometriosis based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 704-719. |
[3] | Gedi Zhang, Gengxin Liu, Ziyou Yan. Therapeutic efficacy evaluation and mechanism of action based on meta-analysis and network pharmacology of Li Chong Decoction (Bolus) for cancer treatment [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 720-735. |
[4] | Dongyan Wu, Xiaodan Wang, Jinmiao Chai, Qinqing Li, Yue Li, Mei Bi, Wanwei Gui, Huimin Cao. Study on the mechanism of Danggui Buxue decoction in the treatment of diabetic retinopathy based on network pharmacology and experiment [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 527-538. |
[5] | Huan Yan, Jian Wang, Hao Fu, Min Yang, Miao Qu, Zhie Fang. Discussion on the potential target and mechanism of Dachaihu Decoction in treating hyperlipidemia based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(6): 446-459. |
[6] | Mengya Wang, Kuanyou Zhang, Xin Chen, Hao Fu, Shouchun Peng. Study on the mechanism of Rhinoceros Horn and Rehmannia Decoction in the treatment of systemic lupus erythematosus based on the method of network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 351-359. |
[7] | Guangzhi Shen, Xingang Cui, Zhimin Na, Yulong Zou, Guihua Zou. A network pharmacology approach to explore the pharmacological mechanism of Epimedium brevicornum in sexual dysfunction [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 379-391. |
[8] | Min Ao, Minglan Bao, Yaxing Hou, Ying Yue, Huifang Li, Guohua Wu, Su Ri Ga La Tu. Study on the mechanism of Mongolian medicine Herba Lomatognii against acute liver injury based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 268-282. |
[9] | Yajing Li, Yawen Bai, Yu Du, Changhong Yan, Chunjie Ma, Lining Sun, Fengyue Bu, Haoyang Yan. Yu Ping Feng Powder for chronic glomerulonephritis treatment: A meta-analysis and network pharmacology study [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(12): 1006-1026. |
[10] | Zhiyong Sun, Shuli Gao, Yang Zhang, Gangqiang Xue, Zilin Yuan, Shaonan Wang. Study on the potential mechanism of Pu Gong Ying in treating breast hyperplasia based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 893-910. |
[11] | Yuqian Zhang, Haiying Niu, Yiran Jin. Network pharmacology-based strategy to investigate anticancer mechanisms of Catharanthus roseus (L.) G. Don [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 911-922. |
[12] | Daiying Zhou, Jing Chen, Zhigang Lv. Network pharmacology prediction and molecular docking-based study on the mechanism of Erigeron breviscapus in the treatment of age-related macular degeneratio [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 923-934. |
[13] | Dongsheng Wei, Xiaosheng Liu, Luzhen Li, Jiajie Qi, Yuxuan Wang, Zhe Zhang. Unraveling the biological and immunological mechanisms of safflower-danshen in the treatment of coronary atherosclerotic heart disease: a comprehensive bioinformatics and single-cell sequencing approach [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(10): 796-812. |
[14] | Ning Ding, Tao Zhang, Ji Luo, Haochen Liu, Yu Deng, Yongheng He. Study on the mechanism of Baishao Qiwu Decoction in the treatment of colorectal cancer based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(1): 17-31. |
[15] | Ipargul Hafiz, Zhaozhi Wang, Hongji He, Zhezhe Li, Mei Wang. Exploring the mechanism of Peganum harmala L. seeds on hepatocellular carcinoma based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(7): 517-529. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||