Journal of Chinese Pharmaceutical Sciences ›› 2020, Vol. 29 ›› Issue (9): 656-665.DOI: 10.5246/jcps.2020.09.061
• A series of reviews on the “application of modern instruments and technologies in drug research” • Previous Articles Next Articles
Qian Wang*, Jing Wang, Shuxiang Song, Guiwang Zhu, Ze Cao, Zhenming Liu*
Received:
2020-07-15
Revised:
2020-08-30
Online:
2020-09-30
Published:
2020-09-05
Contact:
Tel: +86-10-82801437, E-mail: qian.wang@bjmu.edu.cn; zmliu@bjmu.edu.cn
CLC Number:
Supporting:
Qian Wang, Jing Wang, Shuxiang Song, Guiwang Zhu, Ze Cao, Zhenming Liu. Microscale thermophoresis in the investigation of biomolecular interactions[J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(9): 656-665.
[1] Citartan, M.; Gopinath, S.C.; Tominaga, J.; Tang, T.H. Label-free methods of reporting biomolecular interactions by optical biosensors. Analyst. 2013, 138, 3576-3592.
[2] Zheng, X.W.; Li, Z.; Beeram, S.; Podariu, M.; Matsuda, R.; Pfaunmiller, E.L.; White, C.J.; Carter, N.; Hage, D.S. Analysis of biomolecular interactions using affinity microcolumns: a review. J. Chromatogr. B. 2014, 968, 49-63.
[3] Zheng, X.; Bi, C.; Li, Z.; Podariu, M.; Hage, D.S. Analytical Methods for Kinetic Studies of Biological Interactions: A Review. J. Pharm. Biomed. Anal. 2015, 113, 163-180.
[4] Hellman, L.M.; Fried, M.G. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat. Protoc. 2007, 2, 1849-1861.
[5] Engvall, E.; Perlmann, P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry. 1971, 8, 871-874.
[6] Fathi, F.; Ezzati Nazhad Dolatanbadi, J.; Rashidi, M.R.; Omidi, Y. Kinetic studies of bovine serum albumin interaction with PG and TBHQ using surface plasmon resonance. Int. J. Biol. Macromol. 2016, 91, 1045-1050.
[7] Sikarwar, B.; Singh, V.; Sharma, P.K.; Kumar, A.; Thavaselvam, D.; Boopathi, M.; Singh, B.; Jaiswal, Y.K. DNA-probe-target interaction based detection of Brucella melitensis by using surface plasmon resonance. Biosens. Bioelectron. 2017, 87, 964-969.
[8] Fabini, E.; Danielson, U.H. Monitoring drug-serum protein interactions for early ADME prediction through Surface Plasmon Resonance technology. J. Pharm. Biomed. Anal. 2017, 144, 188-194.
[9] Braia, M.; Loureiro, D.; Tubio, G.; Lienqueo, M.E.; Romanini, D. Interaction between trypsin and alginate: an ITC and DLS approach to the formation of insoluble complexes. Colloids Surf. B. Biointerfaces. 2017, 155, 507-511.
[10] Yang, L.Y.; Hua, S.Y.; Zhou, Z.Q.; Wang, G.C.; Jiang, F.L.; Liu, Y. Characterization of fullerenol-protein interactions and an extended investigation on cytotoxicity. Colloids. Surf. B. Biointerfaces. 2017, 157, 261-267.
[11] Li, Z.G.; Wang, Z.C.; Wang, N.; Han, X.X.; Yu, W.Q.; Wang, R.Y.; Chang, J.B. Identification of the binding between three fluoronucleoside analogues and fat mass and obesity-associated protein by isothermal titration calorimetry and spectroscopic techniques. J. Pharm. Biomed. Anal. 2018, 149, 290-295.
[12] Seidel, S.A.I.; Dijkman, P.M.; Lea, W.A.; van den Bogaart, G.; Jerabek-Willemsen, M.; Lazic, A.; Joseph, J.S.; Srinivasan, P.; Baaske, P.; Simeonov, A.; Katritch, I.; Melo, F.A.; Ladbury, J.E.; Schreiber, G.; Watts, A.; Braun, D.; Duhr, S. Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods. 2013, 59, 301-315.
[13] Mao, Y.; Yu, L.; Yang, R.; Ma, C.; Qu, L. B.; Harrington Pde, B. New insights into side effect of solvents on the aggregation of human islet amyloid polypeptide 11-20. Talanta. 2016, 148, 380-386.
[14] Ma, J.; Liu, N.; Li, L.; Ma, X.H.; Li, X.L.; Liu, Y.N.; Li, Y.; Zhou, Z.J.; Gao, Z.X. An evaluation assay for thymine-mercuric-thymine coordination in the molecular beacon-binding system based on microscale thermophoresis. Sensor Actuat. B: Chem. 2017, 252, 680-688.
[15] Wienken, C.J.; Baaske, P.; Rothbauer, U.; Braun, D.; Duhr, S. Protein-binding assays in biological liquids using microscale thermophoresis. Nat. Commun. 2010, 1, 100.
[16] Braun, D.; Libchaber, A. Trapping of DNA by thermophoretic depletion and convection. Phys. Rev. Lett. 2002, 89, 188103.
[17] Reineck, P.; Wienken, C.J.; Braun, D. Thermophoresis of single stranded DNA. Electrophoresis. 2010, 31, 279-286.
[18] Jerabek-Willemsen, M.; Andre, T.; Wanner, R.; Roth, H.M.; Duhr, S.; Baaske, P.; Breitsprecher, D. MicroScale thermophoresis: interaction analysis and beyond. J. Mol. Struct. 2014, 1077, 101-113.
[19] Mao, Y.; Yu, L.; Yang, R.; Qu, L.B.; Harrington Pde, B. A novel method for the study of molecular interaction by using microscale thermophoresis. Talanta. 2015, 132, 894-901.
[20] Asmari, M.; Ratih, R.; Alhazmi, H.A.; El Deeb, S. Thermophoresis for characterizing biomolecular interaction. Methods. 2018, 146, 107-119.
[21] Weinstabl, H.; Treu, M.; Rinnenthal, J.; Zahn, S.K.; Ettmayer, P.; Bader, G.; Dahmann, G.; Kessler, D.; Rumpel, K.; Mischerikow, N.; Savarese, F.; Gerstberger, T.; Mayer, M.; Zoephel, A.; Schnitzer, R.; Sommergruber, W.; Martinelli, P.; Arnhof, H.; Peric-Simov, B.; Hofbauer, K.S.; Garavel, G.; Scherbantin, Y.; Mitzner, S.; Fett, T.N.; Scholz, G.; Bruchhaus, J.; Burkard, M.; Kousek, R.; Ciftci, T.; Sharps, B.; Schrenk, A.; Harrer, C.; Haering, D.; Wolkerstorfer, B.; Zhang, X.; Lv, X.; Du, A.; Li, D.; Li, Y.; Quant, J.; Pearson, M.; McConnell, D.B. Intracellular trapping of the selective phosphoglycerate dehydrogenase (PHGDH) inhibitor BI-4924 disrupts serine biosynthesis. J. Med. Chem. 2019, 62, 7976-7997.
[22] Wang, D.; Zhang, S.; Li, L.; Liu, X.; Mei, K.; Wang, X. Structural Insights into the Assembly and Activation of Il-1β with Its Receptors. Nat. Immunol. 2010, 11, 905-911.
[23] Auron, P.E. The interleukin 1 receptor: ligand interactions and signal transduction. Cytokine Growth Factor Rev. 1998, 9, 221-237.
[24] Vigers, G.P.; Anderson, L.J.; Caffes, P.; Brandhuber, B.J. Crystal structure of the type-I interleukin-1 receptor complexed with interleukin-1beta. Nature. 1997, 386, 190-194.
[25] Sims, J.E. Accessory to inflammation. Nat. Immunol. 2010, 11, 883-885.
[26] Dhimolea, E. Canakinumab. MAbs. 2010, 2, 3-13.
[27] Schlesinger, N.; Mysler, E.; Lin, H.Y.; de Meulemeester, M.; Rovensky, J.; Arulmani, U.; Balfour, A.; Krammer, G.; Sallstig, P.; So, A. Canakinumab reduces the risk of acute gouty arthritis flares during initiation of allopurinol treatment: results of a double-blind, randomised study. Ann. Rheum. Dis. 2011, 70, 1264-1271.
[28] Geiler, J.; McDermott, M.F. Gevokizumab, an anti-IL-1β MAb for the potential treatment of type 1 and 2 diabetes, rheumatoid arthritis and cardiovascular disease. Curr. Opin. Mol. Ther. 2010, 12, 755.
[29] Owyang, A.M.; Issafras, H.; Corbin, J.; Ahluwalia, K.; Larsen, P.; Pongo, E.; Handa, M.; Horwitz, A.H.; Roell, M.K.; Haak-Frendscho, M.; Masat, L. XOMA 052, a potent, high-affinity monoclonal antibody for the treatment of IL-1β-mediated diseases. MAbs. 2011, 3, 49-60.
[30] Roell, M.K.; Issafras, H.; Bauer, R.J.; Michelson, K.S.; Mendoza, N.; Vanegas, S.I.; Gross, L.M.; Larsen, P.D.; Bedinger, D.H.; Bohmann, D.J.; Nonet, G.H.; Liu, N.C.; Lee, S.R.; Handa, M.; Kantak, S.S.; Horwitz, A.H.; Hunter, J.J.; Owyang, A.M.; Mirza, A.M.; Corbin, J.A.; White, M.L. Kinetic approach to pathway attenuation using XOMA 052, a regulatory therapeutic antibody that modulates interleukin-1β activity. J. Biol. Chem. 2010, 285, 20607-20614.
[31] Blech, M.; Peter, D.; Fischer, P.; Bauer, M.M.; Hafner, M.; Zeeb, M.; Nar, H. One target-two different binding modes: structural insights into gevokizumab and canakinumab interactions to interleukin-1β. J. Mol. Biol. 2013, 425, 94-111.
[32] Walls, A.C.; Tortorici, M.A.; Bosch, B.J.; Frenz, B.; Rottier, P.J.M.; DiMaio, F.; Rey, F.A.; Veesler, D. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature. 2016, 531, 114-117.
[33] Du, L.Y.; He, Y.X.; Zhou, Y.S.; Liu, S.W.; Zheng, B.J.; Jiang, S.B. The spike protein of SARS-CoV: a target for vaccine and therapeutic development. Nat. Rev. Microbiol. 2009, 7, 226-236.
[34] Bosch, B.J.; van der Zee, R.; de Haan, C.A.M.; Rottier, P.J.M. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol. 2003, 77, 8801-8811.
[35] Scherzinger, E.; Lurz, R.; Turmaine, M.; Mangiarini, L.; Hollenbach, B.; Hasenbank, R.; Bates, G.P.; Davies, S.W.; Lehrach, H.; Wanker, E.E. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell. 1997, 90, 549-558.
[36] Kabeya, Y.; Mizushima, N.; Ueno, T.; Yamamoto, A.; Kirisako, T.; Noda, T.; Kominami, E.; Ohsumi, Y.; Yoshimori, T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000, 19, 5720-5728.
[37] Li, Z.; Wang, C.; Wang, Z.; Zhu, C.; Li, J.; Sha, T.; Ma, L.; Gao, C.; Yang, Y.; Sun, Y.; Wang, J.; Sun, X.; Lu, C.; Difiglia, M.; Mei, Y.; Ding, C.; Luo, S.; Dang, Y.; Ding, Y.; Fei, Y.; Lu, B. Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds. Nature. 2019, 575, 203-209.
[38] Krouk, G.; Lacombe, B.; Bielach, A.; Perrine-Walker, F.; Malinska, K.; Mounier, E.; Hoyerova, K.; Tillard, P.; Leon, S.; Ljung, K.; Zazimalova, E.; Benkova, E.; Nacry, P.; Gojon, A. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev. Cell. 2010, 18, 927-937.
[39] Parker, J.L.; Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature. 2014, 507, 68-72.
[40] Simonsson, T. G-quadruplex DNA structures: variations on a theme. Biol. Chem. 2001, 382, 621-628.
[41] Neidle, S. Quadruplex nucleic acids as novel therapeutic targets. J. Med. Chem. 2016, 59, 5987-6011.
[42] Pelliccia, S.; Amato, J.; Capasso, D.; Di Gaetano, S.; Massarotti, A.; Piccolo, M.; Irace, C.; Tron, G.C.; Pagano, B.; Randazzo, A.; Novellino, E.; Giustiniano, M. Bio-inspired dual-selective BCL-2/c-MYC G-quadruplex binders: design, synthesis, and anticancer activity of drug-like imidazo[2, 1-i]purine derivatives. J. Med. Chem. 2020, 63, 2035-2050.
[43] Qu, Y.; Gharbi, N.; Yuan, X.; Olsen, J.R.; Blicher, P.; Dalhus, B.; Brokstad, K.A.; Lin, B.; Øyan, A.M.; Zhang, W.; Kalland, K.H.; Ke, X. Axitinib Blocks Wnt/β-catenin signaling and directs asymmetric cell Division in cancer. Proc. Natl. Acad. Sci. USA. 2016, 113, 9339-9344.
[44] Kahn, M. Can we safely target the WNT pathway? Nat. Rev. Drug Discov. 2014, 13, 513-532.
[45] Owczarzy, R.; Tataurov, A.V.; Wu, Y.; Manthey, J.A.; McQuisten, K.A.; Almabrazi, H.G.; Pedersen, K.F.; Lin, Y.; Garretson, J.; McEntaggart, N.O.; Sailor, C.A.; Dawson, R.B.; Peek, A.S. IDT SciTools: a suite for analysis and design of nucleic acid oligomers. Nucleic Acids Res. 2008, 36, W163-W169.
[46] Vanecko, S.; Laskowski, M. Sr. Studies of the specificity of deoxyribonuclease I. III. Hydrolysis of chains carrying a monoesterified phosphate on carbon 5'. J. Biol. Chem. 1961, 236, 3312-3316.
[47] Masini, E.; Carta, F.; Scozzafava, A.; Supuran, C.T. Antiglaucoma carbonic anhydrase inhibitors: a patent review. Expert Opin. Ther. Pat. 2013, 23, 705-716.
[48] Rodionova, N.A.; Semisotnov, G.V.; Kutyshenko, V.P.; Uverskiĭ, V.N.; Bolotina, I.A. Staged equilibrium of carbonic anhydrase unfolding in strong denaturants. Mol. Biol. (Mosk). 1989, 23, 683-692.
[49] Uverskiĭ, V.N.; Ptitsyn, O.B. Three-stage equilibrium unfolding of small globular proteins by denaturing agents. I. Carboanhydrase B. Mol. Biol. (Mosk). 1996, 30, 1124-1134.
[50] Yazgan, A.; Henkens, R.W. Role of zinc (II) in the refolding of guanidine hydrochloride denatured bovine carbonic anhydrase. Biochemistry. 1972, 11, 1314-1318. |
[1] | Wenzhe Li, Xia Yuan, Bo Xu, Shuxiang Song. Applications of multiplexed immunohistochemistry/immunofluorescence and multispectral imaging technology in the field of tumor immunotherapy [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(10): 734-747. |
[2] | Yi Zhou, Junli Lai, Feng Qiu, Jun Zhang. Development and validation of an HPLC-UV method for routine trough plasma concentration monitoring of imatinib in Chinese patients with gastrointestinal stromal tumor [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(9): 637-648. |
[3] | Wen Ma, Shuxiang Song, Jun Li. Surface-assisted laser desorption/ionization mass spectrometry for drug and metabolite analysis [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(8): 577-590. |
[4] | Shaojing Liu, Bei Qin, Hongfang Han, Li Li, Lili Yu, Xiaojing Xu. Preparative separation of high-purity troxerutin and related substances from mother liquor of troxerutin by silica gel column chromatography and semi-preparative liquid chromatography [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(7): 487-493. |
[5] | Jing Wang, Qian Wang, Shuxiang Song. Research progress of surface plasmon resonance technology in drug discovery [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(7): 504-513. |
[6] | Jialin Du, Liangjiu Yang, Kezhao Wei, Can Gong, Jianping Gao, Xu Xu. Determination of free fatty acids in rabbit plasma by GC-MS after trimethylsilylation derivatization [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(6): 411-421. |
[7] | Xuejiao Li, Jianwei Dong, Xiu Gao, Guijun Li, Junyou Shi, Yanqing Zhang. Application of a quantitative 1H NMR method for rapid extraction and determination of the content of paeonol in Cynanchum paniculatum [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(6): 422-430. |
[8] | Yufang Sun, Chen Zheng, Bo Xu. Research on Moflo XDP high speed cell sorting techniques and parameter optimization [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(5): 355-363. |
[9] | Xiaoting Liu, Jingna Xu, Kun Xiao, Qiangsheng Guo, Xu Xu. Determination of chlorogenic acid in traditional Chinese prescription Shuanghuanglian capsule using quantitative nuclear magnetic resonance spectroscopy in combination with solid phase extraction [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(4): 227-235. |
[10] | Sufang Zhang, Cong Li, Ying Zhang, Juncheng Zou, Yinzhu Cui, Xiaomei Ling. Determination of β-amyloid peptides in vitro aggregation process by electrochemistry [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(3): 199-205. |
[11] | Yue Zou, Yang Li, Nanyin Han. The granule characteristics of yam, sweet potato and tapioca starches determined by gravitational field-flow fractionation [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(2): 113-122. |
[12] | Shuxiang Song. Construction and open access management of large-scale instrument platform [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(2): 130-138. |
[13] | Xiwei Ji, Zisheng Kang, Yun Li, Xiping Yang, Xifeng Ma, Chongtie Shi, Yuan Lv. An established LC-MS/MS method and a developed PK model for the study of pharmacokinetic properties of benapenem in infected mice [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(11): 802-811. |
[14] | Ruiyan Li, Mingbo Zhao, Pengfei Tu, Yong Jiang. Simultaneous determination of five phenylethanoid glycosides in Cistanches Herba using quantitative analysis of multi-components by single marker [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(8): 537-546. |
[15] | Yingli Xu, Guangcan Bai, Jingfen Lu. Management of electron paramagnetic resonance spectrometer in a university core laboratory [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(7): 519-526. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||