Journal of Chinese Pharmaceutical Sciences ›› 2020, Vol. 29 ›› Issue (3): 153-160.DOI: 10.5246/jcps.2020.03.013
• Original articles • Next Articles
Xiaoxin Liu1,2, Xiaoya Qin1,2, Ziyuan Li1,2, Tianyuan Fan1,2*
Received:
2019-06-28
Revised:
2019-11-24
Online:
2020-03-30
Published:
2019-12-06
Contact:
Tel.: +86-10-82805123, E-mail: tianyuan_fan@bjmu.edu.cn
Supported by:
CLC Number:
Supporting:
Xiaoxin Liu, Xiaoya Qin, Ziyuan Li, Tianyuan Fan. Microwave-assisted preparation and in vitro characterizations of doped superparamagnetic ferrite nanoclusters[J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(3): 153-160.
[1] Behdadfar, B.; Kermanpur, A.; Sadeghi-Aliabadi, H.; del Puerto Morales, M.; Mozaffari, M. Synthesis of aqueous ferrofluids of ZnxFe3-xO4 nanoparticles by citric acid assisted hydrothermal-reduction route for magnetic hyperthermia applications. J. Magn. Magn. Mater. 2012, 324, 2211-2217.
[2] Jun, Y.W.; Huh, Y.M.; Choi, J.S.; Lee, J.H.; Song, H.T.; Kim, S.; Yoon, S.; Kim, K.S.; Shin, J.S.; Suh, J.S.; Cheon, J. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 2005, 127, 5732-5733.
[3] Thomas, R.G.; Moon, M.J.; Lee, H.; Sasikala, A.R.; Kim, C.S.; Park, I.K.; Jeong, Y.Y. Hyaluronic acid conjugated superparamagnetic iron oxide nanoparticle for cancer diagnosis and hyperthermia therapy. Carbohydr. Polym. 2015, 131, 439-446.
[4] Huang, Y.P.; Mao, K.L.; Zhang, B.L.; Zhao, Y.Z. Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 70, 763-771.
[5] Pöttler, M.; Fliedner, A.; Schreiber, E.; Janko, C.; Friedrich, R.P.; Bohr, C.; Döllinger, M.; Alexiou, C.; Dürr, S. Impact of superparamagnetic iron oxide nanoparticles on vocal fold fibroblasts: cell behavior and cellular iron kinetics. Nanoscale Res. Lett. 2017, 12, 284.
[6] Lloret, P.; Longinotti, G.; Ybarra, G.; Socolovsky, L.; Moina, C. Synthesis, characterization and biofunctionalization of magnetic gold nanostructured particles. Mater. Res. Bull. 2013, 48, 3671-3676.
[7] Casula, M.F.; Conca, E.; Bakaimi, I.; Sathya, A.; Materia, M.E.; Casu, A.; Falqui, A.; Sogne, E.; Pellegrino, T.; Kanaras, A.G. Manganese doped-iron oxide nanoparticle clusters and their potential as agents for magnetic resonance imaging and hyperthermia. Phys. Chem. Chem. Phys. 2016, 18, 16848-16855.
[8] Vamvakidis, K.; Katsikini, M.; Vourlias, G.; Angelakeris, M.; Paloura, E.C.; Dendrinou-Samara, C. Composition and hydrophilicity control of Mn-doped ferrite (MnxFe3-xO4) nanoparticles induced by polyol differentiation. Dalton Trans. 2015, 44, 5396-5406.
[9] Zhao, Z.H.; Zhou, Z.J.; Bao, J.F.; Wang, Z.Y.; Hu, J.; Chi, X.Q.; Ni, K.Y.; Wang, R.F.; Chen, X.Y.; Chen, Z.; Gao, J.H. Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging. Nat. Commun. 2013, 4, 2266.
[10] Yang, L.J.; Ma, L.C.; Xin, J.Y.; Li, A.; Sun, C.J.; Wei, R.X.; Ren, B.W.; Chen, Z.; Lin, H.Y.; Gao, J.H. Composition tunable manganese ferrite nanoparticles for optimized T2 contrast ability. Chem. Mater. 2017, 29, 3038-3047.
[11] Yun, H.; Kim, J.; Paik, T.; Meng, L.Y.; Jo, P.S.; Kikkawa, J.M.; Kagan, C.R.; Allen, M.G.; Murray, C.B. Alternate current magnetic property characterization of nonstoichiometric zinc ferrite nanocrystals for inductor fabrication via a solution based process. J. Appl. Phys. 2016, 119, 113901.
[12] Lv, Z.; Wang, Q.; Bin, Y.Z.; Huang, L.; Zhang, R.; Zhang, P.P.; Matsuo, M. Magnetic behaviors of Mg- and Zn-doped Fe3O4 nanoparticles estimated in terms of crystal domain size, dielectric response, and application of Fe3O4/carbon nanotube composites to anodes for lithium ion batteries. J. Phys. Chem. C. 2015, 119, 26128-26142.
[13] Beeran, A.E.; Fernandez, F.B.; Nazeer, S.S.; Jayasree, R.S.; John, A.; Anil, S.; Vellappally, S.; Al Kheraif, A.A.A.; Varma, P.R.H. Multifunctional nano manganese ferrite ferrofluid for efficient theranostic application. Colloids Surf. B: Biointerfaces. 2015, 136, 1089-1097.
[14] Rezay Marand, Z.; Helmi Rashid Farimani, M.; Shahtahmasebi, N. Study of magnetic and structural and optical properties of Zn doped Fe3O4 nanoparticles synthesized by co-precipitation method for biomedical application. Nanomed. J. 2014, 1, 238-247.
[15] Smith, C.E.; Ernenwein, D.; Shkumatov, A.; Clay, N.E.; Lee, J.; Melhem, M.; Misra, S.; Zimmerman, S.C.; Kong, H. Hydrophilic packaging of iron oxide nanoclusters for highly sensitive imaging. Biomaterials. 2015, 69, 184-190.
[16] Liu, X.; Liu, J.; Zhang, S.H.; Nan, Z.D.; Shi, Q. Structural, magnetic, and thermodynamic evolutions of Zn-doped Fe3O4 nanoparticles synthesized using a one-step solvothermal method. J. Phys. Chem. C. 2016, 120, 1328-1341.
[17] Li, Z.; Gao, K.; Han, G.T.; Wang, R.Y.; Li, H.L.; Zhao, X.S.; Guo, P.Z. Solvothermal synthesis of MnFe2O4 colloidal nanocrystal assemblies and their magnetic and electrocatalytic properties. New J. Chem. 2015, 39, 361-368.
[18] Lu, Z.D.; Yin, Y.D. Colloidal nanoparticle clusters: functional materials by design. Chem. Soc. Rev. 2012, 41, 6874-6887.
[19] Liu, J.; Zhang, Y.N.; Nan, Z.D. Facile synthesis of stoichiometric zinc ferrite nanocrystal clusters with superparamagnetism and high magnetization. Mater. Res. Bull. 2014, 60, 270-278.
[20] Baghbanzadeh, M.; Carbone, L.; Cozzoli, P.D.; Kappe, C.O. Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew. Chem. Int. Ed. Engl. 2011, 50, 11312-11359.
[21] Palanisamy, K.; Kim, Y.; Kim, H.; Kim, J.M.; Yoon, W.S. Self-assembled porous MoO2/graphene microspheres towards high performance anodes for lithium ion batteries. J. Power Sources. 2015, 275, 351-361.
[22] Wang, W.W. Microwave-induced polyol-process synthesis of MIIFe2O4 (M = Mn, Co) nanoparticles and magnetic property. Mater. Chem. Phys. 2008, 108, 227-231.
[23] Li, C.Y.; Wei, Y.J.; Liivat, A.; Zhu, Y.H.; Zhu, J.F. Microwave-solvothermal synthesis of Fe3O4 magnetic nanoparticles. Mater. Lett. 2013, 107, 23-26.
[24] Nikitin, A.A.; Shchetinin, I.V.; Tabachkova, N.Y.; Soldatov, M.A.; Soldatov, A.V.; Sviridenkova, N.V.; Beloglazkina, E.K.; Savchenko, A.G.; Fedorova, N.D.; Abakumov, M.A.; Majouga, A.G. Synthesis of iron oxide nanoclusters by thermal decomposition. Langmuir. 2018, 34, 4640-4650.
[25] Lai, L.M.; Jiang, X.R.; Han, S.Y.; Zhao, C.Q.; Du, T.; Rehman, F.U.; Zheng, Y.K.; Li, X.Q.; Liu, X.L.; Jiang, H.; Wang, X.M. In vivo biosynthesized zinc and iron oxide nanoclusters for high spatiotemporal dual-modality bioimaging of Alzheimer’s disease. Langmuir. 2017, 33, 9018-9024.
[26] Dong, F.P.; Guo, W.P.; Bae, J.H.; Kim, S.H.; Ha, C.S. Highly porous, water-soluble, superparamagnetic, and biocompatible magnetite nanocrystal clusters for targeted drug delivery. Chemistry. 2011, 17, 12802-12808.
[27] Xuan, S.H.; Wang, F.; Wang, Y.X.J.; Yu, J.C.; Leung, K.C.F. Facile synthesis of size-controllable monodispersed ferrite nanospheres. J. Mater. Chem. 2010, 20, 5086.
[28] Guo, P.Z.; Cui, L.J.; Wang, Y.Q.; Lv, M.; Wang, B.Y.; Zhao, X.S. Facile synthesis of ZnFe2O4 nanoparticles with tunable magnetic and sensing properties. Langmuir. 2013, 29, 8997-9003.
[29] Qi, Y.Z.; Shao, C.; Gu, W.; Li, F.Y.; Deng, Y.L.; Li, H.S.; Ye, L. Carboxylic silane-exchanged manganese ferrite nanoclusters with high relaxivity for magnetic resonance imaging. J. Mater. Chem. B. 2013, 1, 1846.
[30] Gao, J.N.; Ran, X.Z.; Shi, C.M.; Cheng, H.M.; Cheng, T.M.; Su, Y.P. One-step solvothermal synthesis of highly water-soluble, negatively charged superparamagnetic Fe3O4 colloidal nanocrystal clusters. Nanoscale. 2013, 5, 7026-7033.
[31] Zhu, M.Y.; Zhang, X.; Zhou, Y.; Zhuo, C.H.; Huang, J.C.; Li, S.J. Facile solvothermal synthesis of porous ZnFe2O4 microspheres for capacitive pseudocapacitors. RSC Adv. 2015, 5, 39270-39277.
[32] Tian, Q.; Wang, Q.; Xie, Q.S.; Li, J.G. Aqueous solution preparation, structure, and magnetic properties of nano-granular Zn(x)Fe(3-x)O(4) ferrite films. Nanoscale Res. Lett. 2010, 5, 1518-1523.
[33] Lu, Z.L.; Lv, L.Y.; Zhu, J.M.; Li, S.D.; Liu, X.C.; Zou, W.Q.; Zhang, F.M.; Du, Y.W. Magnetic and transport property studies of nanocrystalline ZnxFe3−xO4. Solid State Commun. 2006, 137, 528-532.
[34] Liu, J.; Bin, Y.Z.; Matsuo, M. Magnetic behavior of Zn-doped Fe3O4 nanoparticles estimated in terms of crystal domain size. J. Phys. Chem. C. 2012, 116, 134-143.
[35] Liu, J.; Sun, Z.K.; Deng, Y.H.; Zou, Y.; Li, C.Y.; Guo, X.H.; Xiong, L.Q.; Gao, Y.; Li, F.Y.; Zhao, D.Y. Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew. Chem. Int. Ed. Engl. 2009, 48, 5875-5879.
[36] Pal, M.; Lee, S.; Kwon, D.; Hwang, J.; Lee, H.; Hwang, S.; Jeon, S. Direct immobilization of antibodies on Zn-doped Fe3O4 nanoclusters for detection of pathogenic bacteria. Anal. Chim. Acta. 2017, 952, 81-87. |
[1] | Junsheng Xue, Siyuan Wang, Fangran Hao, Xiuyun Tian, Hong Su, Liang Yang, Qiming An, Chunyi Hao, Tianyan Zhou. Dopamine increases the anti-cancer efficacy of sunitinib in the treatment of pancreatic cancer [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(10): 689-700. |
[2] | Chengqun Li, Xia Niu, Jiahui Mu, Xiaomei Wang, Jin Su, Guiling Li. Preparation and in vitro evaluation of APT011-loaded sustained-release microspheres [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(8): 554-563. |
[3] | Jin Zhang, Weiwei Lin, Wei Wu, Xianzhong Guo, Pinfang Huang, Xinhua Lin, Zheng Jiao, Changlian Wang. Population pharmacokinetics of vancomycin in Chinese elderly patients and its application for dose individualisation [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(4): 260-271. |
[4] | Thananchanoke Rattanathada, Tullayakorn Plengsuriyakarn, Rathapon Asasujarit, Anurak Cheoymang, Juntra Karbwang, Kesara Na-Bangchang. Development of oral pharmaceutical formulation of standardized crude ethanolic extract of Atractylodes lancea (Thunb) DC. [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(4): 280-293. |
[5] | Shengxin Wang, Xiangli Yan, Haozhen Zheng, Jianye Yu, Aiming Yu, Xiao Shen, Lisheng Wang. Pharmacokinetics of different dosage of astragalus membranaceus of buyang huanwu decoction in rats with cerebral ischemic injury by microdialysis combined with LC/MS [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(2): 90-101. |
[6] | Xueling Wang, Yanqin Liang, Yuan Zhang, Bing He, Wenbing Dai, Hua Zhang, Xueqing Wang, Qiang Zhang. Combination therapy of cRGD-DOX self-assembled nanoparticles and bevacizumab for breast cancer [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(9): 627-640. |
[7] | Xinyu Shen, Xingchen Wang, Caihong Gu, Feng Yan, Bo Pan, Lizeng Gao, Bingchun Yan, Qi Liu, Rong Hu. A novel preparation of Panax japonicas with high bioequivalence of ginsenoside Rg3 [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(9): 650-664. |
[8] | Yao Jin, Qi Liu, Chuhang Zhou, Shidi Han, Yuanhang Zhou, Xinping Hu, Leqi Wang, Yan Liu. Construction and characterization of intestinal oligopeptide transporter PepT1-targeted polymeric micelles for enhanced intestinal absorption of poorly water-soluble agents [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(8): 561-570. |
[9] | Jiaxing Wang, Yu Wang, Jiahui Mou, Xiaomeng Wei, Mengya Yin, Yajie Liu, Jiajia Li, Xinru Li. Decoration of bacterial outer membrane vesicles with liposomes [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(8): 571-578. |
[10] | Qi Shen, Mei Wang, Xiaohui Tang, Munire Kuerban. Preparation of a Hippophae rhamnoides Linn oil nanoemulsion and the visualization of its transdermal permeation [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(8): 579-594. |
[11] | Yitian Du, Lu Zhang, Yin Zhan, Xinyu Chai, Kaisen Li, Xianrong Qi. Interferon-liposomes prepared to make macroglia maintain M1 phenotype [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(7): 476-483. |
[12] | Bo Deng, Wei Cui, Shuang Ma, Xiaona Liu, Zhan Zhang, Baiyi Yan, Kun Chen, Ying Xie. Molecular basis for rational construction of RVGP modified liposomal delivery system targeting to brain [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(7): 484-501. |
[13] | Yanli Hao, Ting Zhong, Ruo Du, Hua Zhang, Bilin Liu, Xuan Zhang. The cellular uptake and anti-tumor activity of conjugated linoleic acid-paclitaxel-loaded iRGD-modified lysolipid-containing thermosensitive liposomes [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(2): 121-133. |
[14] | Shixuan Cheng, Yingcong Ma, Yujie Liu, Ning Pang, Ji Li, Meng Sha, Rutong Ren, Nuramatjan Ablat, Jing Cao, Yi Sun, Xiaoping Pu, Min Ye, Xianrong Qi. Preparation and characterization of drop pills of effective part from safflower for anti-Parkinson’s disease [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(1): 27-39. |
[15] | Guanghua Peng, Wenxi Zhang, Maoyuan Song, Mengya Yin, Jiaxing Wang, Jiajia Li, Yajie Liu, Yuanyuan Zhang, Xinru Li, Guiling Li. The relationship between structural parameters and antibacterial biofilm activity for alkyl rhamnoside as a novel amphiphilic material [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(12): 817-823. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||