[1] Kharel, M.K.; Pahari, P.; Shepherd, M.D.; Tibrewal, N.; Nybo, S.E.; Shaaban, K.A.; Rohr, J. Angucyclines: Biosynthesis, mode-of-action, new natural products, and synthesis. Nat. Prod. Rep. 2012, 29, 264-325.
[2] Ma, M.; Rateb, M.E.; Teng, Q.H.; Yang, D.; Rudolf, J.D.; Zhu, X.C.; Huang, Y.; Zhao, L.X.; Jiang, Y.; Li, X.L.; Rader, C.; Duan, Y.W.; Shen, B. Angucyclines and angucyclinones from streptomyces sp. CB01913 featuring C-ring cleavage and expansion. J. Nat. Prod. 2015, 78, 2471-2480.
[3] Jin, J.; Yang, X.Y.; Liu, T.; Xiao, H.; Wang, G.Y.; Zhou, M.J.; Liu, F.W.; Zhang, Y.T.; Liu, D.; Chen, M.H.; Cheng, W.; Yang, D.H.; Ma, M. Fluostatins M-Q featuring a 6-5-6-6 ring skeleton and high oxidized A-rings from marine streptomyces sp. PKU-MA00045. Mar. Drugs. 2018, 16, E87.
[4] Carr, G.; Derbyshire, E.R.; Caldera, E.; Currie, C.R.; Clardy, J. Antibiotic and antimalarial quinones from fungus-growing ant-associated Pseudonocardia sp. J. Nat. Prod. 2012, 75, 1806-1809.
[5] Guo, F.; Xiang, S.H.; Li, L.Y.; Wang, B.; Rajasärkkä, J.; Gröndahl-Yli-hannuksela, K.; Ai, G.M.; Metsä-Ketelä, M.; Yang, K.Q. Targeted activation of silent natural product biosynthesis pathways by reporter-guided mutant selection. Metab. Eng. 2015, 28, 134-142.
[6] Sasaki, E.; Ogasawara, Y.; Liu, H.W. A biosynthetic pathway for BE-7585A, a 2-thiosugar-containing angucycline-type natural product. J. Am. Chem. Soc. 2010, 132, 7405-7417.
[7] Faust, B.; Hoffmeister, D.; Weitnauer, G.; Westrich, L.; Haag, S.; Schneider, P.; Decker, H.; Künzel, E.; Rohr, J.; Bechthold, A. Two new tailoring enzymes, a glycosyl-transferase and an oxygenase, involved in biosynthesis of the angucycline antibiotic urdamycin A in Streptomyces fradiae Tü2717. Microbiology. (Reading, Engl.) 2000, 146, 147-154.
[8] Dashti, Y.; Grkovic, T.; Abdelmohsen, U.R.; Hentschel, U.; Quinn, R.J. Actinomycete metabolome induction/suppression with N-acetylglucosamine. J. Nat. Prod. 2017, 80, 828-836.
[9] Guo, Z.K.; Liu, S.B.; Jiao, R.H.; Wang, T.; Tan, R.X.; Ge, H.M. Angucyclines from an insect-derived actinobacterium Amycolatopsis sp. HCa1 and their cytotoxic activity. Bioorg. Med. Chem. Lett. 2012, 22, 7490-7493.
[10] Brötz, E.; Bilyk, O.; Kröger, S.; Paululat, T.; Bechthold, A.; Luzhetskyy, A. Amycomycins C and D, new angucyclines from Kitasatospora sp. Tetrahedron Lett. 2014, 55, 5771-5773.
[11] Rasmussen, R.R.; Nuss, M.E.; Scherr, M.H.; Mueller, S.L.; McAlpine, J.B.; Mitscher, L.A. Benzanthrins A and B, a new class of quinone antibiotics. II. Isolation, elucidation of structure and potential antitumor activity. J. Antibiot. 1986, 39, 1515-1526.
[12] Uesato, S.; Tokunaga, T.; Takeuchi, K. Novel angucycline compound with both antigastrin- and gastric mucosal protective-activities. Bioorg. Med. Chem. Lett. 1998, 8, 1969-1972.
[13] Zhang, Y.L.; Gan, M.L.; Lin, S.; Liu, M.T.; Song, W.X.; Zi, J.C.; Wang, S.J.; Li, S.; Yang, Y.C.; Shi, J.G. Glycosides from the bark of Adina polycephala. J. Nat. Prod. 2008, 71, 905-909.
[14] Ding, Y.Q.; Li, X.C.; Ferreira, D. Theoretical calculation of electronic circular dichroism of a hexahydroxydiphenoyl-containing flavanone glycoside. J. Nat. Prod. 2009, 72, 327-335.
[15] Liu, Y.; Ding, S.Y.; Dietrich, R.; Märtlbauer, E.; Zhu, K. Corrigendum: A biosurfactant-inspired heptapeptide with improved specificity to kill MRSA. Angew. Chem. Int. Ed. Engl. 2017, 56, 5651.
[16] Xi, L.J.; Ruan, J.S.; Huang, Y. Diversity and biosynthetic potential of culturable actinomycetes associated with marine sponges in the China Seas. Int. J. Mol. Sci. 2012, 13, 5917-5932.
[17] Heuer, H.; Krsek, M.; Baker, P.; Smalla, K.; Wellington, E.M. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 1997, 63, 3233-3241.
[18] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, O.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT. 2009.
[19] Bruhn, T.; Schaumlöffel, A.; Hemberger, Y.; Bringmann, G. SpecDis: quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality. 2013, 25, 243-249. |