| [1] |
Reed, S.G.; Orr, M.T.; Fox, C.B. Key roles of adjuvants in modern vaccines. Nat. Med. 2013, 19, 1597–1608.
|
| [2] |
Bonam, S.R.; Partidos, C.D.; Halmuthur, S.K.M.; Muller, S. An overview of novel adjuvants designed for improving vaccine efficacy. Trends Pharmacol. Sci. 2017, 38, 771–793.
|
| [3] |
Zhang, L.Y.; Zhou, X. Research status of aluminum hydroxide adjuvant for vaccines. Chin. J. Biologicals. 2020, 33, 213–215, 221.
|
| [4] |
Prodromou, K.P.; Pavlatou-Ve, A.S. Formation of aluminum hydroxides as influenced by aluminum salts and bases. Clays Clay Miner. 1995, 43, 111–115.
|
| [5] |
Wang, S.L.; Johnston, C.T.; Bish, D.L.; White, J.L.; Hem, S.L. Water-vapor adsorption and surface area measurement of poorly crystalline boehmite. J. Colloid Interface Sci. 2003, 260, 26–35.
|
| [6] |
Hsu, P.H. Effect of salts on the formation of bayerite versus pseudo-boehmite. Soil Sci. 103, 101–110.
|
| [7] |
Burrell, L.S.; Johnston, C.T.; Schulze, D.; Klein, J.; White, J.L.; Hem, S.L. Aluminium phosphate adjuvants prepared by precipitation at constant pH. Part I: composition and structure. Vaccine. 2000, 19, 275–281.
|
| [8] |
Gupta, R.K.; Rost, B.E. Aluminum compounds as vaccine adjuvants. Vaccine adjuvants: preparation methods and research protocols. Adv. Del. Rev. 1998, 32, 153–288.
|
| [9] |
Yang, X.F.; Liu, S.X.; Hu, G.X.; Zhou, Y.; Huang, P.; Zhang, L.; Zhang, H.; Zhang, F.W. Effect of spray addition of ammonia on the quality consistency of aluminum hydroxide adjuvant. Int. J. Biologics. 2022, 45,196–199.
|
| [10] |
Li, X.R.; Aldayel, A.M.; Cui, Z.R. Aluminum hydroxide nanoparticles show a stronger vaccine adjuvant activity than traditional aluminum hydroxide microparticles. J. Control. Release. 2014, 173, 148–157.
|
| [11] |
Morefield, G.L.; Sokolovska, A.; Jiang, D.P.; HogenEsch, H.; Robinson, J.P.; Hem, S.L. Role of aluminum-containing adjuvants in antigen internalization by dendritic cells in vitro. Vaccine. 2005, 23, 1588–1595.
|
| [12] |
Zeng, Y.; Zhou, W.K. Aluminum hydroxide nanoparticle adjuvants can reduce the inflammatory response more efficiently in a mouse model of allergic asthma than traditional aluminum hydroxide adjuvants. Exp. Ther. Med. 2023, 27, 39.
|
| [13] |
Clapp, T.; Siebert, P.; Chen, D.X.; Jones Braun, L. Vaccines with aluminum-containing adjuvants: optimizing vaccine efficacy and thermal stability. J. Pharm. Sci. 2011, 100, 388–401.
|
| [14] |
Duprez, J.; Kalbfleisch, K.; Deshmukh, S.; Payne, J.; Haer, M.; Williams, W.; Durowoju, I.; Kirkitadze, M. Structure and compositional analysis of aluminum oxyhydroxide adsorbed pertussis vaccine. Comput. Struct. Biotechnol. J. 2021, 19, 439–447.
|
| [15] |
Burrell, L.S.; Lindblad, E.B.; White, J.L.; Hem, S.L. Stability of aluminium-containing adjuvants to autoclaving. Vaccine. 1999, 17, 2599–2603.
|
| [16] |
Tettenhorst, R.; Hofmann, D.A. Crystal chemistry of boehmite. Clays Clay Miner. 1980, 28, 373–380.
|
| [17] |
Yau, K.P.; Schulze, D.G.; Johnston, C.T.; Hem, S.L. Aluminum hydroxide adjuvant produced under constant reactant concentration. J. Pharm. Sci. 2006, 95, 1822–1833.
|
| [18] |
Dandashli, E.A.; Zhao, Q.J.; Yitta, S.; Morefield, G.L.; White, J.L.; Hem, S.L. Effect of thermal treatment during the preparation of aluminum hydroxide adjuvant on the protein adsorption capacity during aging. Pharm. Dev. Technol. 2002, 7, 401–406.
|
| [19] |
Lindblad, E.B. Aluminium adjuvants: in retrospect and prospect. Vaccine. 2004, 22, 3658–3668.
|
| [20] |
Yang, B. F.; Zhu, D. W.; Chen, W.; Zhou, Y. S.; Wang, L.; Gong, B.Z.; Fang, X.J.; Huo, M.Y.; Hu, Y.; Yang, X.M. Adsorption property of aluminum hydroxide adjuvant to fimbriae antigen of Bordetella pertussis. Chin. J. Biologicals. 2021, 34, 260–265, 271.
|
| [21] |
Mark, A.; Björkstén, B.; Granström, M. Immunoglobulin E responses to diphtheria and tetanus toxoids after booster with aluminium-adsorbed and fluid DT-vaccines. Vaccine. 1995, 13, 669–673.
|
| [22] |
Mbhele, Z.; Thwala, L.; Khoza, T.; Ramagoma, F. Evaluation of aluminium hydroxide nanoparticles as an efficient adjuvant to potentiate the immune response against clostridium botulinum serotypes C and D toxoid vaccines. Vaccines. 2023, 11, 1473.
|
| [23] |
Jaldin-Fincati, J.; Moussaoui, S.; Gimenez, M.C.; Ho, C.Y.; Lancaster, C.E.; Botelho, R.; Ausar, F.; Brookes, R.; Terebiznik, M. Aluminum hydroxide adjuvant diverts the uptake and trafficking of genetically detoxified pertussis toxin to lysosomes in macrophages. Mol. Microbiol. 2022, 117, 1173–1195.
|
| [24] |
Li, Z.; Huang, X. Y.; Wu, Y.; Song, X.H.; Long, Z.; Li, Y.Q.; Huang, T.H.; Ma, X. Application of laser particle size analyzer to evaluation of batch consistency and stability of adsorbed DTaP vaccine. Chin. J. Biologicals. 2020, 33, 818–823.
|
| [25] |
Shah, R.R.; Hassett, K.J.; Brito, L.A. Overview of vaccine adjuvants: introduction, history, and current status. Methods Mol. Biol. 2017, 1494, 1–13.
|
| [26] |
Rinella, J.V.; White, J.L.; Hem, S.L. Effect of pH on the elution of model antigens from aluminum-containing adjuvants. J. Colloid Interface Sci. 1998, 205, 161–165.
|