Journal of Chinese Pharmaceutical Sciences ›› 2024, Vol. 33 ›› Issue (2): 142-155.DOI: 10.5246/jcps.2024.02.012
• Original articles • Previous Articles Next Articles
Yunli Chen1,2, Renliang Yan3, Lisha Li2, Yamin Zhang2, Xiaomei Xu2, Xuehua Lu2, Rongqing Xu2, Wenjin Lin1,2,*()
Received:
2023-07-21
Revised:
2023-08-26
Accepted:
2023-09-23
Online:
2024-03-03
Published:
2024-03-03
Contact:
Wenjin Lin
Supported by:
Supporting: /attached/file/20240308/20240308224252_40.pdf
Yunli Chen, Renliang Yan, Lisha Li, Yamin Zhang, Xiaomei Xu, Xuehua Lu, Rongqing Xu, Wenjin Lin. Mechanism of Citri Reticulatae Pericarpium in treating Alzheimer’s disease based on network pharmacology and molecular docking[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(2): 142-155.
[1] |
Zhang, H.; Zheng, Y. Beta amyloid hypothesis in Alzheimer’s Disease: Pathogenesis, Prevention, and Management. Acta. Acad. Med. Sin. 2019, 41, 702–708.
|
[2] |
Sharma, C.; Kim, S.; Nam, Y.; Jung, U.J.; Kim, S.R. Mitochondrial dysfunction as a driver of cognitive impairment in Alzheimer’s disease. Int. J. Mol. Sci. 2021, 22, 4850.
|
[3] |
Se Thoe, E.; Fauzi, A.; Tang, Y.Q.; Chamyuang, S.; Chia, A.Y.Y. A review on advances of treatment modalities for Alzheimer’s disease. Life Sci. 2021, 276, 119129.
|
[4] |
Zhang, X.M.; Lian, S.H.; Zhang, Y.S.; Zhao, Q.C. Efficacy and safety of donepezil for mild cognitive impairment: a systematic review and meta-analysis. Clin. Neurol. Neurosurg. 2022, 213, 107134.
|
[5] |
Yang, X.Y.; Wang, X.C.; Huang, C.H.; Huang, Z.S. Research progress in the treatment of Alzheimer’s disease with traditional Chinese medicine. Chin. J. Ethnomed. Ethnopharm. 2016, 25, 37–38.
|
[6] |
Qian, Y.; Shao, Y.R.; Lu, S.F.; Wang, J.J.; Chen, Z.P. Research Progress on Traditional Chinese Medicine in the Treatment of Alzheimer’s Disease. J. Nanjing Univ. Tradit. Chin. Med. 2019, 35, 761–766.
|
[7] |
Li, L.; Zhang, L. Action Characteristics of Traditional Chinese Medicine in Treatment of Alzheimer’s Disease. Prog. Biochem.Biophys. 2012, 39, 816–828.
|
[8] |
Fu, M.Q.; Zou, B.; An, K.J.; Yu, Y.S.; Tang, D.B.; Wu, J.J.; Xu, Y.J.; Ti, H.H. Anti-asthmatic activity of alkaloid compounds from Pericarpium Citri Reticulatae (Citrus reticulata ‘Chachi’). Food Funct. 2019, 10, 903–911.
|
[9] |
Ho, S.C.; Kuo, C.T. Hesperidin, nobiletin, and tangeretin are collectively responsible for the anti-neuroinflammatory capacity of tangerine peel (Citri reticulatae pericarpium). Food Chem. Toxicol. 2014, 71, 176–182.
|
[10] |
Bian, X.Q.; Xie, X.Y.; Cai, J.L.; Zhao, Y.R.; Miao, W.; Chen, X.L.; Xiao, Y.; Li, N.; Wu, J.L. Dynamic changes of phenolic acids and antioxidant activity of Citri Reticulatae Pericarpium during aging processes. Food Chem. 2022, 373, 131399.
|
[11] |
Li, X.C.; Huang, Y.P.; Chen, D.F. Protective effect against hydroxyl-induced DNA damage and antioxidant activity of Citri reticulatae pericarpium. Adv. Pharm. Bull. 2013, 3, 175–181.
|
[12] |
Song, L.; Xiong, P.; Zhang, W.; Hu, H.C.; Tang, S.Q.; Jia, B.; Huang, W. Mechanism of citri reticulatae pericarpium as an anticancer agent from the perspective of flavonoids: a review. Molecules. 2022, 27, 5622.
|
[13] |
Yuan, H.D.; Ma, Q.Q.; Cui, H.Y.; Liu, G.C.; Zhao, X.Y.; Li, W.; Piao, G.C. How can synergism of traditional medicines benefit from network pharmacology? Molecules. 2017, 22, 1135.
|
[14] |
Marsh, D.T.; Das, S.; Ridell, J.; Smid, S.D. Structure-activity relationships for flavone interactions with amyloid β reveal a novel anti-aggregatory and neuroprotective effect of 2’, 3’, 4’-trihydroxyflavone (2-D08). Bioorg. Med. Chem. 2017, 25, 3827–3834.
|
[15] |
Jung, M.; Park, M. Acetylcholinesterase inhibition by flavonoids from agrimonia Pilosa. Molecules. 2007, 12, 2130–2139.
|
[16] |
Kim, J.Y.; Lee, W.S.; Kim, Y.S.; Curtis-Long, M.J.; Lee, B.W.; Ryu, Y.B.; Park, K.H. Isolation of cholinesterase-inhibiting flavonoids from morus lhou. J. Agric. Food Chem. 2011, 59, 4589–4596.
|
[17] |
Braidy, N.; Behzad, S.; Habtemariam, S.; Ahmed, T.; Daglia, M.; Nabavi, S.M.; Sobarzo-Sanchez, E.; Nabavi, S.F. Neuroprotective effects of citrus fruit-derived flavonoids, nobiletin and tangeretin in Alzheimer’s and Parkinson’s disease. CNS Neurol. Disord. Drug Targets. 2017, 16, 387–397.
|
[18] |
Suntres, Z.E.; Coccimiglio, J.; Alipour, M. The bioactivity and toxicological actions of carvacrol. Crit. Rev. Food Sci. Nutr. 2015, 55, 304–318.
|
[19] |
Ahmad, F.; Singh, K.; Das, D.; Gowaikar, R.; Shaw, E.; Ramachandran, A.; Rupanagudi, K.V.; Kommaddi, R.; Bennett, D.; Ravindranath, V. Reactive oxygen species-mediated loss of synaptic Akt1 signaling leads to deficient activity-dependent protein translation early in Alzheimer’s disease. Antioxid. & Redox Signal. 2017, 27, 1269–1280.
|
[20] |
Greilberger, J.; Koidl, C.; Greilberger, M.; Lamprecht, M.; Schroecksnadel, K.; Leblhuber, F.; Fuchs, D.; Oettl, K. Malondialdehyde, carbonyl proteins and albumin-disulphide as useful oxidative markers in mild cognitive impairment and Alzheimer’s disease. Free. Radic. Res. 2008, 42, 633–638.
|
[21] |
Lazarev, V.F.; Tsolaki, M.; Mikhaylova, E.R.; Benken, K.A.; Shevtsov, M.A.; Nikotina, A.D.; Lechpammer, M.; Mitkevich, V.A.; Makarov, A.A.; Moskalev, A.A.; Kozin, S.A.; Margulis, B.A.; Guzhova, I.V.; Nudler, E. Extracellular GAPDH promotes alzheimer disease progression by enhancing amyloid-β aggregation and cytotoxicity. Aging Dis. 2021, 12, 1223–1237.
|
[22] |
Mansour, H.M.; Fawzy, H.M.; El-Khatib, A.S.; Khattab, M.M. Potential repositioning of anti-cancer EGFR inhibitors in Alzheimer’s disease: current perspectives and challenging prospects. Neuroscience. 2021, 469, 191–196.
|
[23] |
Ian, Z. Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential. Neuro-Signals. 2005, 14, 207–221.
|
[24] |
Brigman, J.L.; Wright, T.; Talani, G.; Prasad-Mulcare, S.; Jinde, S.; Seabold, G.K.; Mathur, P.; Davis, M.I.; Bock, R.; Gustin, R.M.; Colbran, R.J.; Alvarez, V.A.; Nakazawa, K.; Delpire, E.; Lovinger, D.M.; Holmes, A. Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. J. Neurosci. 2010, 30, 4590–4600.
|
[25] |
Wang, X.; Zhou, X.; Li, G.Y.; Zhang, Y.; Wu, Y.L.; Song, W.H. Modifications and trafficking of APP in the pathogenesis of Alzheimer’s disease. Front. Mol. Neurosci. 2017, 10, 294.
|
[26] |
Müller, U.C.; Deller, T.; Korte, M. Not just amyloid: physiological functions of the amyloid precursor protein family. Nat. Rev. Neurosci. 2017, 18, 281–298.
|
[27] |
Siddiq, A.; Aminova, L.R.; Ratan, R.R. Hypoxia inducible factor prolyl 4-hydroxylase enzymes: center stage in the battle against hypoxia, metabolic compromise and oxidative stress. Neurochem. Res. 2007, 32, 931–946.
|
[28] |
Chen, X.; Hu, J.Y.; Chen, Q.H.; Liang, L.C.; Wang, L.Y.; Liang, Z.W.; Wang, Y.; Cai M. Metabolic disorder mechanisms of cognitive dysfunction in AD: brain insulin resistance and impairment of the PI3K/Akt signaling pathway. Chem. Life. 2020, 40, 269–276.
|
[29] |
Khan, A.W.; Farooq, M.; Hwang, M.J.; Haseeb, M.; Choi, S. Autoimmune neuroinflammatory diseases: role of interleukins. Int. J. Mol. Sci. 2023, 24, 7960.
|
[30] |
Berridge, M.J.; Lipp, P.; Bootman, M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 2000, 1, 11–21.
|
[31] |
Li, M.; Zhang, W.R.; Wang, W.; He, Q.; Yin, M.M.; Qin, X.E.; Zhang, T.Y.; Wu, T. Imidazole improves cognition and balances Alzheimer’s-like intracellular calcium homeostasis in transgenic Drosophila model. Neurourol. Urodyn. 2018, 37, 1250–1257.
|
[32] |
Berridge, M.J. Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia. Prion. 2013, 7, 2–13.
|
[1] | Zhengru Han, Wanci Song, Yang Luo, Min Xiao, Mengheng Wang, Wuyinxiao Zheng, Hanxiong Dan, Qiang Yin, Hailong Yin, Pengtao You. Hugan Buzure granule ameliorates immune liver injury through the EGFR/Ras/PI3K/AKT signaling pathway: A network pharmacology study and experimental validation [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(2): 123-141. |
[2] | Hong Zhang, Shasha Zhang, Huanyun Wang, Yue Liang, Shikui Wu, Lijun Sun, Huimin Xia, Yunxia Bai, Huiwen Zhang. Integrated serum pharmacochemistry and network pharmacology analyses reveal the bioactive metabolites and potential functional mechanism of Piper longum L. in the treatment of gastric ulcer in rats [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(2): 156-168. |
[3] | Dan Wang. A network pharmacology for exploring the pharmacological mechanism of the herbal formula Xiaoyao pills on insomnia [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(2): 169-177. |
[4] | Mengyao Wu, Lu Liu, Peng Zhang, Lele Zhang, Yun Gong, Xiuwei Yang. Exploring the mechanism of Buxue Yimu Pills on postpartum abdominal pain through network pharmacology and experimental validation [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 691-703. |
[5] | Ping Shang, Lin Liu, Yi Fang. Investigating the mechanism of action of Gui Zhi Fu Ling Wan in the treatment of endometriosis based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 704-719. |
[6] | Gedi Zhang, Gengxin Liu, Ziyou Yan. Therapeutic efficacy evaluation and mechanism of action based on meta-analysis and network pharmacology of Li Chong Decoction (Bolus) for cancer treatment [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 720-735. |
[7] | Dongyan Wu, Xiaodan Wang, Jinmiao Chai, Qinqing Li, Yue Li, Mei Bi, Wanwei Gui, Huimin Cao. Study on the mechanism of Danggui Buxue decoction in the treatment of diabetic retinopathy based on network pharmacology and experiment [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 527-538. |
[8] | Huan Yan, Jian Wang, Hao Fu, Min Yang, Miao Qu, Zhie Fang. Discussion on the potential target and mechanism of Dachaihu Decoction in treating hyperlipidemia based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(6): 446-459. |
[9] | Mengya Wang, Kuanyou Zhang, Xin Chen, Hao Fu, Shouchun Peng. Study on the mechanism of Rhinoceros Horn and Rehmannia Decoction in the treatment of systemic lupus erythematosus based on the method of network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 351-359. |
[10] | Guangzhi Shen, Xingang Cui, Zhimin Na, Yulong Zou, Guihua Zou. A network pharmacology approach to explore the pharmacological mechanism of Epimedium brevicornum in sexual dysfunction [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 379-391. |
[11] | Min Ao, Minglan Bao, Yaxing Hou, Ying Yue, Huifang Li, Guohua Wu, Su Ri Ga La Tu. Study on the mechanism of Mongolian medicine Herba Lomatognii against acute liver injury based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 268-282. |
[12] | Yajing Li, Yawen Bai, Yu Du, Changhong Yan, Chunjie Ma, Lining Sun, Fengyue Bu, Haoyang Yan. Yu Ping Feng Powder for chronic glomerulonephritis treatment: A meta-analysis and network pharmacology study [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(12): 1006-1026. |
[13] | Zhiyong Sun, Shuli Gao, Yang Zhang, Gangqiang Xue, Zilin Yuan, Shaonan Wang. Study on the potential mechanism of Pu Gong Ying in treating breast hyperplasia based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 893-910. |
[14] | Yuqian Zhang, Haiying Niu, Yiran Jin. Network pharmacology-based strategy to investigate anticancer mechanisms of Catharanthus roseus (L.) G. Don [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 911-922. |
[15] | Daiying Zhou, Jing Chen, Zhigang Lv. Network pharmacology prediction and molecular docking-based study on the mechanism of Erigeron breviscapus in the treatment of age-related macular degeneratio [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 923-934. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||