[1] |
Chen, L.P.; Li, M.X.; Yang, Z.Q.; Tao, W.D.; Wang, P.; Tian, X.Y.; Li, X.L.; Wang, W.G. Gardenia jasminoides Ellis: Ethnopharmacology, phytochemistry, and pharmacological and industrial applications of an important traditional Chinese medicine. J. Ethnopharmacol. 2020, 257, 112829.
|
[2] |
Yang, Y.S.; Ding, Y.; Zhang, T. Biotransformation of geniposide into genipin by immobilized Trichoderma reesei and conformational study of genipin. Biomed. Res. Int. 2018, 2018, 2079195.
|
[3] |
Xia, Z.S.; Hao, E.W.; Wei, Y.T.; Hou, X.T.; Chen, Z.M.; Wei, M.; Du, Z.C.; Deng, J.G. Genipin induces developmental toxicity through oxidative stress and apoptosis in zebrafish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2021, 241, 108951.
|
[4] |
Li, Y.W.; Li, L.; Hölscher, C. Therapeutic potential of genipin in central neurodegenerative diseases. CNS Drugs. 2016, 30, 889–897.
|
[5] |
Shanmugam, M.K.; Shen, H.Y.; Tang, F.R.; Arfuso, F.; Rajesh, M.; Wang, L.Z.; Kumar, A.P.; Bian, J.S.; Goh, B.C.; Bishayee, A.; Sethi, G. Potential role of genipin in cancer therapy. Pharmacol. Res. 2018, 133, 195–200.
|
[6] |
Fan, X.F.; Lin, L.; Cui, B.X.; Zhao, T.M.; Mao, L.H.; Song, Y.; Wang, X.Y.; Feng, H.J.; Yu, Q.X.; Zhang, J.; Jiang, K.; Cao, X.C.; Wang, B.M.; Sun, C. Therapeutic potential of genipin in various acute liver injury, fulminant hepatitis, NAFLD and other non-cancer liver diseases: more friend than foe. Pharmacol. Res. 2020, 159, 104945.
|
[7] |
Guan, L.L.; Feng, H.Y.; Gong, D.Z.; Zhao, X.; Cai, L.; Wu, Q.; Yuan, B.; Yang, M.; Zhao, J.; Zou, Y. Genipin ameliorates age-related insulin resistance through inhibiting hepatic oxidative stress and mitochondrial dysfunction. Exp. Gerontol. 2013, 48, 1387–1394.
|
[8] |
Guan, L.L.; Gong, D.Z.; Yang, S.R.; Shen, N.N.; Zhang, S.; Li, Y.C.; Wu, Q.; Yuan, B.; Sun, Y.P.; Dai, N.; Zhu, L.; Zou, Y. Genipin ameliorates diet-induced obesity via promoting lipid mobilization and browning of white adipose tissue in rats. Phytother. Res. 2018, 32, 723–732.
|
[9] |
Wang, Z.; Liu, H.; Luo, W.; Cai, T.; Li, Z.; Liu, Y.; Gao, W.; Wan, Q.; Wang, X.; Wang, J.; Wang, Y.; Yang, X.. Regeneration of skeletal system with genipin crosslinked biomaterials. J. Tissue. Eng. 2020, 11, 2041731420974861.
|
[10] |
Yu, Y.B.; Xu, S.; Li, S.M.; Pan, H. Genipin-cross-linked hydrogels based on biomaterials for drug delivery: a review. Biomater. Sci. 2021, 9, 1583–1597.
|
[11] |
Muzzarelli, R.; El Mehtedi, M.; Bottegoni, C.; Aquili, A.; Gigante, A. Genipin-crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone. Mar. Drugs. 2015, 13, 7314–7338.
|
[12] |
Manickam, B.; Sreedharan, R.; Elumalai, M. ‘genipin’–the natural water soluble cross-linking agent and its importance in the modified drug delivery systems: an overview. Curr. Drug Deliv. 2014, 11, 139–145.
|
[13] |
Khanal, T.; Kim, H.G.; Choi, J.H.; Do, M.T.; Kong, M.J.; Kang, M.J.; Noh, K.; Yeo, H.K.; Ahn, Y.T.; Kang, W.; Kim, D.H.; Jeong, T.C.; Jeong, H.G. Biotransformation of geniposide by human intestinal microflora on cytotoxicity against HepG2 cells. Toxicol. Lett. 2012, 209, 246–254.
|
[14] |
Hobbs, C.A.; Koyanagi, M.; Swartz, C.; Davis, J.; Maronpot, R.; Recio, L.; Hayashi, S.M. Genotoxicity evaluation of the naturally-derived food colorant, gardenia blue, and its precursor, genipin. Food Chem. Toxicol. 2018, 118, 695–708.
|
[15] |
Cui, Y.Z.; Sun, R.; Wang, Q.J.; Wang, M.Z. Hepatotoxicity induced by intragastrically administrated with Gardenia Decoction in mice. Nat. Prod. Res. 2017, 31, 2824–2827.
|
[16] |
Li, C.N.; Lan, M.; Lv, J.W.; Zhang, Y.; Gao, X.C.; Gao, X.; Dong, L.H.; Luo, G.M.; Zhang, H.; Sun, J.M. Screening of the hepatotoxic components in fructus gardeniae and their effects on rat liver BRL-3A cells. Molecules. 2019, 24, 3920.
|
[17] |
Hou, Y.C.; Tsai, S.Y.; Lai, P.Y.; Chen, Y.S.; Chao, P.D.. Metabolism and pharmacokinetics of genipin and geniposide in rats. Food Chem. Toxicol. 2008, 46, 2764–2769.
|
[18] |
Wang, G.W.; Bao, B.; Han, Z.Q.; Han, Q.Y.; Yang, X.L. Metabolic profile of Fructus Gardeniae in human plasma and urine using ultra high-performance liquid chromatography coupled with high-resolution LTQ-orbitrap mass spectrometry. Xenobiotica. 2016, 46, 901–912.
|
[19] |
Chen, J.; Wu, H.; Dai, M.M.; Li, H.; Chen, J.Y.; Hu, S.L. Identification and distribution of four metabolites of geniposide in rats with adjuvant arthritis. Fitoterapia. 2014, 97, 111–121.
|
[20] |
He, L.Q.; Zhou, X.H.; Huang, N.; Li, H.; Li, T.J.; Yao, K.; Tian, Y.N.; Hu, C.A.A.; Yin, Y.L. Functions of pregnane X receptor in self-detoxification. Amino Acids. 2017, 49, 1999–2007.
|
[21] |
Zhou, S.F. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr. Drug Metab. 2008, 9, 310–322.
|
[22] |
Al-Dujaili, E.A.S.; Kenyon, C.J.; Nicol, M.R.; Mason, J.I. Liquorice and glycyrrhetinic acid increase DHEA and deoxycorticosterone levels in vivo and in vitro by inhibiting adrenal SULT2A1 activity. Mol. Cell Endocrinol. 2011, 336, 102–109.
|
[23] |
Tian, X.G.; Wang, C.; Dong, P.P.; An, Y.; Zhao, X.Y.; Jiang, W.R.; Wang, G.; Hou, J.; Feng, L.; Wang, Y.; Ge, G.B.; Huo, X.K.; Ning, J.; Ma, X.C. Arenobufagin is a novel isoform-specific probe for sensing human sulfotransferase 2A1. Acta Pharm. Sin. B. 2018, 8, 784–794.
|
[24] |
Miners, J.O.; Chau, N.; Rowland, A.; Burns, K.; McKinnon, R.A.; Mackenzie, P.I.; Tucker, G.T.; Knights, K.M.; Kichenadasse, G. Inhibition of human UDP-glucuronosyltransferase enzymes by lapatinib, pazopanib, regorafenib and sorafenib: implications for hyperbilirubinemia. Biochem. Pharmacol. 2017, 129, 85–95.
|
[25] |
Li, D.Y.; Knox, B.; Chen, S.; Wu, L.H.; Tolleson, W.H.; Liu, Z.C.; Yu, D.K.; Guo, L.; Tong, W.D.; Ning, B.T. microRNAs hsa-miR-495-3p and hsa-miR-486-5p suppress basal and rifampicin-induced expression of human sulfotransferase 2A1 (SULT2A1) by facilitating mRNA degradation. Biochem. Pharmacol. 2019, 169, 113617.
|
[26] |
Sugatani, J.; Uchida, T.; Kurosawa, M.; Yamaguchi, M.; Yamazaki, Y.; Ikari, A.; Miwa, M.S. Regulation of pregnane X receptor (PXR) function and UGT1A1 Gene expression by posttranslational modification of PXR protein. Drug Metab. Dispos. 2012, 40, 2031–2040.
|
[27] |
Enoru-Eta, J.; Yengi, L.; He, X.Y.; Kubik, J.; Kao, J.; Scatina, J. Development of a UGT1A1 reporter gene assay for induction studies: correlation between reporter gene data and regulation of UGT1A1 in human hepatocytes. Drug Metab. Lett. 2010, 4, 31–38.
|
[28] |
Han, H.; Yang, L.; Xu, Y.; Ding, Y.; Bligh, S.W.A.; Zhang, T.; Wang, Z.T. Identification of metabolites of geniposide in rat urine using ultra-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 3339–3350.
|
[29] |
Ding, Y.; Hou, J.W.; Zhang, Y.; Zhang, L.Y.; Zhang, T.; Chen, Y.; Cai, Z.Z.; Yang, L. Metabolism of genipin in rat and identification of metabolites by using ultraperformance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry. Evid. Based Complement. Alternat. Med. 2013, 2013, 957030.
|
[30] |
Almazroo, O.A.; Miah, M.K.; Venkataramanan, R. Drug metabolism in the liver. Clin. Liver Dis. 2017, 21, 1–20.
|
[31] |
Jancova, P.; Anzenbacher, P.; Anzenbacherova, E. Phase II drug metabolizing enzymes. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czechoslov. 2010, 154, 103–116.
|