Journal of Chinese Pharmaceutical Sciences ›› 2022, Vol. 31 ›› Issue (12): 901-911.DOI: 10.5246/jcps.2022.12.076
• Review • Next Articles
Jin Hu1,*(), Jiajun Xue1, Juan Shen2
Received:
2022-09-05
Revised:
2022-10-12
Accepted:
2022-10-23
Online:
2022-12-27
Published:
2022-12-27
Contact:
Jin Hu
Supporting:
Jin Hu, Jiajun Xue, Juan Shen. Possible mechanism of benvitimod in atopic dermatitis and psoriasis[J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(12): 901-911.
[1] |
Matejuk, A. Skin immunity. Arch. Immunol. Ther. Exp. (Warsz) 2018, 66, 45–54.
|
[2] |
Orsmond, A.; Bereza-Malcolm, L.; Lynch, T.; March, L.; Xue, M.L. Skin barrier dysregulation in psoriasis. Int. J. Mol. Sci. 2021, 22, 10841.
|
[3] |
Dainichi, T.; Kitoh, A.; Otsuka, A.; Nakajima, S.; Nomura, T.; Kaplan, D.H.; Kabashima, K. The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis. Nat. Immunol. 2018, 19, 1286–1298.
|
[4] |
Uttarkar, S.; Brembilla, N.C.; Boehncke, W.H. Regulatory cells in the skin: Pathophysiologic role and potential targets for anti-inflammatory therapies. J. Allergy Clin. Immunol. 2019, 143, 1302–1310.
|
[5] |
von Meyenn, L.; Bertschi, N.L.; Schlapbach, C. Targeting T cell metabolism in inflammatory skin disease. Front. Immunol. 2019, 10, 2285.
|
[6] |
Xu, Y.P.; Dimitrion, P.; Cvetkovski, S.; Zhou, L.; Mi, Q.S. Epidermal resident γδ T cell development and function in skin. Cell Mol. Life Sci. 2021, 78, 573–580.
|
[7] |
Afonina, I.S.; Van Nuffel, E.; Beyaert, R. Immune responses and therapeutic options in psoriasis. Cell Mol. Life Sci. 2021, 78, 2709–2727.
|
[8] |
Nakahara, T.; Kido-Nakahara, M.; Tsuji, G.; Furue, M. Basics and recent advances in the pathophysiology of atopic dermatitis. J. Dermatol. 2021, 48, 130–139.
|
[9] |
Nussbaum, L.; Chen, Y.L.; Ogg, G.S. Role of regulatory T cells in psoriasis pathogenesis and treatment. Br. J. Dermatol. 2021, 184, 14–24.
|
[10] |
Dubin, C.; Del Duca, E.; Guttman-Yassky, E. The IL-4, IL-13 and IL-31 pathways in atopic dermatitis. Expert Rev. Clin. Immunol. 2021, 17, 835–852.
|
[11] |
Paller, A.S.; Kong, H.H.; Seed, P.; Naik, S.; Scharschmidt, T.C.; Gallo, R.L.; Luger, T.; Irvine, A.D. The microbiome in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2019, 143, 26–35.
|
[12] |
Lewis, D.J.; Chan, W.H.; Hinojosa, T.; Hsu, S.; Feldman, S.R. Mechanisms of microbial pathogenesis and the role of the skin microbiome in psoriasis: a review. Clin. Dermatol. 2019, 37, 160–166.
|
[13] |
Schäbitz, A.; Eyerich, K.; Garzorz-Stark, N. So close, and yet so far away: the dichotomy of the specific immune response and inflammation in psoriasis and atopic dermatitis. J. Intern. Med. 2021, 290, 27–39.
|
[14] |
Suga, H.; Sato, S. Novel topical and systemic therapies in atopic dermatitis. Immunol. Med. 2019, 42, 84–93.
|
[15] |
Maul, J.T.; Anzengruber, F.; Conrad, C.; Cozzio, A.; Häusermann, P.; Jalili, A.; Kolios, A.G.A.; Laffitte, E.; Lapointe, A.K.; Mainetti, C.; Schlapbach, C.; Trüeb, R.; Yawalkar, N.; Dippel, M.; Navarini, A.A. Topical treatment of psoriasis vulgaris: the Swiss treatment pathway. Dermatology. 2021, 237, 166–178.
|
[16] |
Li, J.; Chen, G.; Wu, H.; Webster, J.M. Identification of two pigments and a hydroxystilbene antibiotic from Photorhabdus luminescens. Appl. Environ. Microbiol. 1995, 61, 4329–4333.
|
[17] |
Cai, L.; Chen, G.H.; Lu, Q.J.; Zheng, M.; Li, Y.Z.; Chen, J.; Zheng, J.; Zhang, F.R.; Yu, J.B.; Yang, S.; Li, F.Q.; Xiao, S.X.; Sun, Q.N.; Xu, J.H.; Gao, X.H.; Fang, H.; Gao, T.W.; Hao, F.; Liu, Q.Z.; Tu, Y.T.; Li, R.Y.; Wang, B.X.; Deng, D.Q.; Zheng, Q.S.; Liu, H.X.; Zhang, J.Z. A double-blind, randomized, placebo- and positive-controlled phase III trial of 1% benvitimod cream in mild-to-moderate plaque psoriasis. Chin. Med. J. (Engl) 2020, 133, 2905–2909.
|
[18] |
Lebwohl, M.G.; Stein Gold, L.; Strober, B.; Papp, K.A.; Armstrong, A.W.; Bagel, J.; Kircik, L.; Ehst, B.; Hong, H.C.H.; Soung, J.; Fromowitz, J.; Guenthner, S.; Piscitelli, S.C.; Rubenstein, D.S.; Brown, P.M.; Tallman, A.M.; Bissonnette, R. Phase 3 trials of tapinarof cream for plaque psoriasis. N. Engl. J. Med. 2021, 385, 2219–2229.
|
[19] |
Peppers, J.; Paller, A.S.; Maeda-Chubachi, T.; Wu, S.; Robbins, K.; Gallagher, K.; Kraus, J.E. A phase 2, randomized dose-finding study of tapinarof (GSK2894512 cream) for the treatment of atopic dermatitis. J. Am. Acad. Dermatol. 2019, 80, 89–98.e3.
|
[20] |
Smith, S.H.; Jayawickreme, C.; Rickard, D.J.; Nicodeme, E.; Bui, T.; Simmons, C.; Coquery, C.M.; Neil, J.; Pryor, W.M.; Mayhew, D.; Rajpal, D.K.; Creech, K.; Furst, S.; Lee, J.; Wu, D.L.; Rastinejad, F.; Willson, T.M.; Viviani, F.; Cote-Sierra, J. Tapinarof is a natural AhR agonist that resolves skin inflammation in mice and humans. J. Investig. Dermatol. 2017, 137, 2110–2119.
|
[21] |
van den Bogaard, E.H.; Esser, C.; Perdew, G.H. The aryl hydrocarbon receptor at the forefront of host-microbe interactions in the skin: a perspective on current knowledge gaps and directions for future research and therapeutic applications. Exp. Dermatol. 2021, 30, 1477–1483.
|
[22] |
Fernández-Gallego, N.; Sánchez-Madrid, F.; Cibrian, D. Role of AHR ligands in skin homeostasis and cutaneous inflammation. Cells. 2021, 10, 3176.
|
[23] |
Kim, J.; Park, S.H.; Seyoung, Y.; Oh, S.; Kwon, K.; Park, S.; Yu, E.; Kim, H.; Park, J.; Choi, S.; Yang, S.; Song, M.; Cho, J.; Lee, J. Protective effects of maclurin against benzo[a]pyrene via aryl hydrocarbon receptor and nuclear factor erythroid 2-related factor 2 targeting. Antioxidants. 2021, 10, 1189.
|
[24] |
Liu, X.C.; Zhang, X.N.; Zhang, J.X.; Luo, Y.; Xu, B.L.; Ling, S.Q.; Zhang, Y.; Li, W.; Yao, X. Activation of aryl hydrocarbon receptor in Langerhans cells by a microbial metabolite of tryptophan negatively regulates skin inflammation. J. Dermatol. Sci. 2020, 100, 192–200.
|
[25] |
Roztocil, E.; Hammond, C.L.; Gonzalez, M.O.; Feldon, S.E.; Woeller, C.F. The aryl hydrocarbon receptor pathway controls matrix metalloproteinase-1 and collagen levels in human orbital fibroblasts. Sci. Rep. 2020, 10, 8477.
|
[26] |
Wang, X.W.; Li, S.L.; Liu, L.; Jian, Z.; Cui, T.T.; Yang, Y.Q.; Guo, S.; Yi, X.L.; Wang, G.; Li, C.Y.; Gao, T.W.; Li, K. Role of the aryl hydrocarbon receptor signaling pathway in promoting mitochondrial biogenesis against oxidative damage in human melanocytes. J. Dermatol. Sci. 2019, 96, 33–41.
|
[27] |
Tsuji, N.; Fukuda, K.; Nagata, Y.; Okada, H.; Haga, A.; Hatakeyama, S.; Yoshida, S.; Okamoto, T.; Hosaka, M.; Sekine, K.; Ohtaka, K.; Yamamoto, S.; Otaka, M.; Grave, E.; Itoh, H. The activation mechanism of the aryl hydrocarbon receptor (AhR) by molecular chaperone HSP90. FEBS Open Bio. 2014, 4, 796–803.
|
[28] |
Cox, M.B.; Miller, C.A. 3rd. Cooperation of heat shock protein 90 and p23 in aryl hydrocarbon receptor signaling. Cell Stress Chaperones. 2004, 9, 4–20.
|
[29] |
Kazlauskas, A.; Poellinger, L.; Pongratz, I. Evidence that the Co-chaperone p23 regulates ligand responsiveness of the dioxin (aryl hydrocarbon) receptor. J. Biol. Chem. 1999, 274, 13519–13524.
|
[30] |
Backlund, M.; Ingelman-Sundberg, M. Regulation of aryl hydrocarbon receptor signal transduction by protein tyrosine kinases. Cell Signal. 2005, 17, 39–48.
|
[31] |
Meyer, B.K.; Pray-Grant, M.G.; Vanden Heuvel, J.P.; Perdew, G.H. Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity. Mol. Cell Biol. 1998, 18, 978–988.
|
[32] |
Reyes, H.; Reisz-Porszasz, S.; Hankinson, O. Identification of the Ah receptor nuclear translocator protein (Arnt) as a component of the DNA binding form of the Ah receptor. Science. 1992, 256, 1193–1195.
|
[33] |
Nakano, N.; Sakata, N.; Katsu, Y.; Nochise, D.; Sato, E.; Takahashi, Y.; Yamaguchi, S.; Haga, Y.; Ikeno, S.; Motizuki, M.; Sano, K.; Yamasaki, K.; Miyazawa, K.; Itoh, S. Dissociation of the AhR/ARNT complex by TGF-β/Smad signaling represses CYP1A1 gene expression and inhibits benze[a]pyrene-mediated cytotoxicity. J. Biol. Chem. 2020, 295, 9033–9051.
|
[34] |
Ahmed, S.; Wang, A.N.; Celius, T.; Matthews, J. Zinc finger nuclease-mediated knockout of AHR or ARNT in human breast cancer cells abolishes basal and ligand-dependent regulation of CYP1B1 and differentially affects estrogen receptor α transactivation. Toxicol. Sci. 2013, 138, 89–103.
|
[35] |
Swanson, H.I. Cytochrome P450 expression in human keratinocytes: an aryl hydrocarbon receptor perspective. Chem. Biol. Interact. 2004, 149, 69–79.
|
[36] |
Vogel, C.F.A.; Van Winkle, L.S.; Esser, C.; Haarmann-Stemmann, T. The aryl hydrocarbon receptor as a target of environmental stressors - Implications for pollution mediated stress and inflammatory responses. Redox Biol. 2020, 34, 101530.
|
[37] |
Yuan, J.W.; Sun, X.M.; Che, S.Y.; Zhang, L.; Ruan, Z.; Li, X.M.; Yang, J.H. AhR-mediated CYP1A1 and ROS overexpression are involved in hepatotoxicity of decabromodiphenyl ether (BDE-209). Toxicol. Lett. 2021, 352, 26–33.
|
[38] |
Cui, H.M.; Gu, X.S.; Chen, J.S.; Xie, Y.; Ke, S.; Wu, J.; Golovko, A.; Morpurgo, B.; Yan, C.H.; Phillips, T.D.; Xie, W.; Luo, J.Y.; Zhou, Z.J.; Tian, Y.N. Pregnane X receptor regulates the AhR/Cyp1A1 pathway and protects liver cells from benzo-[α]-pyrene-induced DNA damage. Toxicol. Lett. 2017, 275, 67–76.
|
[39] |
Nakano, N.; Sakata, N.; Katsu, Y.; Nochise, D.; Sato, E.; Takahashi, Y.; Yamaguchi, S.; Haga, Y.; Ikeno, S.; Motizuki, M.; Sano, K.; Yamasaki, K.; Miyazawa, K.; Itoh, S. Dissociation of the AhR/ARNT complex by TGF-β/Smad signaling represses CYP1A1 gene expression and inhibits benze[a]pyrene-mediated cytotoxicity. J. Biol. Chem. 2020, 295, 9033–9051.
|
[40] |
Tzeng, H.P.; Lan, K.C.; Yang, T.H.; Chung, M.N.; Liu, S.H. Benzo[a]pyrene activates interleukin-6 induction and suppresses nitric oxide-induced apoptosis in rat vascular smooth muscle cells. PLoS One. 2017, 12, e0178063.
|
[41] |
Hu, T.T.; Pan, Z.Y.; Yu, Q.; Mo, X.H.; Song, N.J.; Yan, M.; Zouboulis, C.C.; Xia, L.Q.; Ju, Q. Benzo(a)pyrene induces interleukin (IL)-6 production and reduces lipid synthesis in human SZ95 sebocytes via the aryl hydrocarbon receptor signaling pathway. Environ. Toxicol. Pharmacol. 2016, 43, 54–60.
|
[42] |
Schulz, V.J.; Smit, J.J.; Huijgen, V.; Bol-Schoenmakers, M.; van Roest, M.; Kruijssen, L.J.W.; Fiechter, D.; Hassing, I.; Bleumink, R.; Safe, S.; van Duursen, M.B.M.; van den Berg, M.; Pieters, R.H.H. Non-dioxin-like AhR ligands in a mouse peanut allergy model. Toxicol. Sci. 2012, 128, 92–102.
|
[43] |
Guttman-Yassky, E.; Brunner, P.M.; Neumann, A.U.; Khattri, S.; Pavel, A.B.; Malik, K.; Singer, G.K.; Baum, D.; Gilleaudeau, P.; Sullivan-Whalen, M.; Rose, S.; On, S.J.; Li, X.; Fuentes-Duculan, J.; Estrada, Y.; Garcet, S.; Traidl-Hoffmann, C.; Krueger, J.G.; Lebwohl, M.G. Efficacy and safety of fezakinumab (an IL-22 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by conventional treatments: a randomized, double-blind, phase 2a trial. J. Am. Acad. Dermatol. 2018, 78, 872–881.e6.
|
[44] |
Furue, M. Regulation of filaggrin, loricrin, and involucrin by IL-4, IL-13, IL-17A, IL-22, AHR, and NRF2: pathogenic implications in atopic dermatitis. Int. J. Mol. Sci. 2020, 21, 5382.
|
[45] |
Murray, I.A.; Patterson, A.D.; Perdew, G.H. Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nat. Rev. Cancer. 2014, 14, 801–814.
|
[46] |
Kiyomatsu-Oda, M.; Uchi, H.; Morino-Koga, S.; Furue, M. Protective role of 6-formylindolo[3, 2-b]carbazole (FICZ), an endogenous ligand for arylhydrocarbon receptor, in chronic mite-induced dermatitis. J. Dermatol. Sci. 2018, 90, 284–294.
|
[47] |
Furue, M.; Uchi, H.; Mitoma, C.; Hashimoto-Hachiya, A.; Tanaka, Y.; Ito, T.; Tsuji, G. Implications of tryptophan photoproduct FICZ in oxidative stress and terminal differentiation of keratinocytes. G. Ital. Dermatol. Venereol. 2019, 154, 37–41.
|
[48] |
Elentner, A.; Finke, D.; Schmuth, M.; Chappaz, S.; Ebner, S.; Malissen, B.; Kissenpfennig, A.; Romani, N.; Dubrac, S. Langerhans cells are critical in the development of atopic dermatitis-like inflammation and symptoms in mice. J. Cell Mol. Med. 2009, 13, 2658–2672.
|
[49] |
Kado, S.; Chang, W.L.W.; Chi, A.N.; Wolny, M.; Shepherd, D.M.; Vogel, C.F.A. Aryl hydrocarbon receptor signaling modifies Toll-like receptor-regulated responses in human dendritic cells. Arch. Toxicol. 2017, 91, 2209–2221.
|
[50] |
Junttila, I.S. Tuning the cytokine responses: an update on interleukin (IL)-4 and IL-13 receptor complexes. Front. Immunol. 2018, 9, 888.
|
[51] |
Takei, K.; Mitoma, C.; Hashimoto-Hachiya, A.; Uchi, H.; Takahara, M.; Tsuji, G.; Kido-Nakahara, M.; Nakahara, T.; Furue, M. Antioxidant soybean tar Glyteer rescues T-helper-mediated downregulation of filaggrin expression via aryl hydrocarbon receptor. J. Dermatol. 2015, 42, 171–180.
|
[52] |
Takemura, M.; Nakahara, T.; Hashimoto-Hachiya, A.; Furue, M.; Tsuji, G. Glyteer, soybean tar, impairs IL-4/Stat6 signaling in murine bone marrow-derived dendritic cells: the basis of its therapeutic effect on atopic dermatitis. Int. J. Mol. Sci. 2018, 19, 1169.
|
[53] |
Jeong, K.T.; Hwang, S.J.; Oh, G.S.; Park, J.H. FICZ, a Tryptophan photoproduct, suppresses pulmonary eosinophilia and Th2-type cytokine production in a mouse model of ovalbumin-induced allergic asthma. Int. Immunopharmacol. 2012, 13, 377–385.
|
[54] |
Koch, S.; Stroisch, T.J.; Vorac, J.; Herrmann, N.; Leib, N.; Schnautz, S.; Kirins, H.; Förster, I.; Weighardt, H.; Bieber, T. AhR mediates an anti-inflammatory feedback mechanism in human Langerhans cells involving FcεRI and IDO. Allergy. 2017, 72, 1686–1693.
|
[55] |
Fuentes, F.; Gomez, Y.; Paredes-Gonzalez, X.; Barve, A.; Nair, S.; Yu, S.W.; Saw, C.L.L.; Kong, A.N.T. Nrf2-mediated antioxidant and detoxifying enzyme induction by a combination of curcumin and sulforaphaneNrf2-mediated antioxidant and detoxifying enzyme induction by a combination of curcumin and sulforaphane. J. Chin. Pharm. Sci. 2016, 25, 559–569.
|
[56] |
He, F.; Ru, X.L.; Wen, T. NRF2, a transcription factor for stress response and beyond. Int. J. Mol. Sci. 2020, 21, 4777.
|
[57] |
He, L.; Xu, J.L.; Guo, L.M.; Que, L.L.; Yin, W.C.; Cao, B.S.; Yu, S.W. Nrf2/ARE signaling protects against oxaliplatin-induced hepatotoxicity in mice. J. Chin. Pharm. Sci. 2017, 26, 709–718.
|
[58] |
Jain, A.; Lamark, T.; Sjøttem, E.; Bowitz Larsen, K.; Atesoh Awuh, J.; Øvervatn, A.; McMahon, M.; Hayes, J.D.; Johansen, T. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J. Biol. Chem. 2010, 285, 22576–22591.
|
[59] |
Han, D.D.; Gu, X.L.; Gao, J.; Wang, Z.; Liu, G.; Barkema, H.W.; Han, B. Chlorogenic acid promotes the Nrf2/HO-1 anti-oxidative pathway by activating p21Waf1/Cip1 to resist dexamethasone-induced apoptosis in osteoblastic cells. Free Radic. Biol. Med. 2019, 137, 1–12.
|
[60] |
Lu, K.; Alcivar, A.L.; Ma, J.L.; Foo, T.K.; Zywea, S.; Mahdi, A.; Huo, Y.Y.; Kensler, T.W.; Gatza, M.L.; Xia, B. NRF2 induction supporting breast cancer cell survival is enabled by oxidative stress-induced DPP3-KEAP1 interaction. Cancer Res. 2017, 77, 2881–2892.
|
[61] |
Gorrini, C.; Baniasadi, P.S.; Harris, I.S.; Silvester, J.; Inoue, S.; Snow, B.; Joshi, P.A.; Wakeham, A.; Molyneux, S.D.; Martin, B.; Bouwman, P.; Cescon, D.W.; Elia, A.J.; Winterton-Perks, Z.; Cruickshank, J.; Brenner, D.; Tseng, A.; Musgrave, M.; Berman, H.K.; Khokha, R.; Jonkers, J.; Mak, T.W.; Gauthier, M.L. BRCA1 interacts with Nrf2 to regulate antioxidant signaling and cell survival. J. Exp. Med. 2013, 210, 1529–1544.
|
[62] |
Camp, N.D.; James, R.G.; Dawson, D.W.; Yan, F.; Davison, J.M.; Houck, S.A.; Tang, X.B.; Zheng, N.; Major, M.B.; Moon, R.T. Wilms tumor gene on X chromosome (WTX) inhibits degradation of NRF2 protein through competitive binding to KEAP1 protein*. J. Biol. Chem. 2012, 287, 6539–6550.
|
[63] |
Shan, Y.L.; Wei, Z.H.; Tao, L.; Wang, S.L.; Zhang, F.; Shen, C.S.; Wu, H.Y.; Liu, Z.G.; Zhu, P.T.; Wang, A.Y.; Chen, W.X.; Lu, Y. Prophylaxis of diallyl disulfide on skin carcinogenic model via p21-dependent Nrf2 stabilization. Sci. Rep. 2016, 6, 35676.
|
[64] |
Shaw, P.; Chattopadhyay, A. Nrf2-ARE signaling in cellular protection: mechanism of action and the regulatory mechanisms. J. Cell Physiol. 2020, 235, 3119–3130.
|
[65] |
Vasiliou, V.; Puga, A.; Chang, C.Y.; Tabor, M.W.; Nebert, D.W. Interaction between the Ah receptor and proteins binding to the AP-1-like electrophile response element (EpRE) during murine phase II[Ah]battery gene expression. Biochem. Pharmacol. 1995, 50, 2057–2068.
|
[66] |
Miao, W.M.; Hu, L.G.; Scrivens, P.J.; Batist, G. Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway. J. Biol. Chem. 2005, 280, 20340–20348.
|
[67] |
Chen, G.; Shin, J.A. AhR/Arnt: XRE interaction: turning false negatives into true positives in the modified yeast one-hybrid assay. Anal. Biochem. 2008, 382, 101–106.
|
[68] |
Yang, L.T.; Fan, X.L.; Cui, T.T.; Dang, E.L.; Wang, G. Nrf2 promotes keratinocyte proliferation in psoriasis through up-regulation of keratin 6, keratin 16, and keratin 17. J. Investig. Dermatol. 2017, 137, 2168–2176.
|
[69] |
Lee, Y.; Shin, J.M.; Jang, S.; Choi, D.K.; Seo, M.S.; Kim, H.R.; Sohn, K.C.; Im, M.; Seo, Y.J.; Lee, J.H.; Kim, C.D. Role of nuclear factor E2-related factor 2 (Nrf2) in epidermal differentiation. Arch. Dermatol. Res. 2014, 306, 677–682.
|
[70] |
Kurinna, S.; Muzumdar, S.; Köhler, U.A.; Kockmann, T.; Auf dem Keller, U.; Schäfer, M.; Werner, S. Autocrine and paracrine regulation of keratinocyte proliferation through a novel Nrf2-IL-36γ pathway. J. Immunol. 2016, 196, 4663–4670.
|
[71] |
Yoo, O.K.; Choi, W.J.; Keum, Y.S. Cardamonin inhibits oxazolone-induced atopic dermatitis by the induction of NRF2 and the inhibition of Th2 cytokine production. Antioxidants. (Basel) 2020, 9, 834.
|
[72] |
Saidu, N.; Kavian, N.; Leroy, K.; Jacob, C.; Nicco, C.; Batteux, F.; Alexandre, J. Dimethyl fumarate, a two-edged drug: Current status and future directions. Med. Res. Rev. 2019, 39, 1923–1952.
|
[73] |
Jiménez-Osorio, A.S.; González-Reyes, S.; Pedraza-Chaverri, J. Natural Nrf2 activators in diabetes. Clin. Chimica Acta. 2015, 448, 182–192.
|
[74] |
Zhang, Q.Y.; Chu, X.Y.; Jiang, L.H.; Liu, M.Y.; Mei, Z.L.; Zhang, H.Y. Identification of non-electrophilic Nrf2 activators from approved drugs. Molecules. 2017, 22, 883.
|
[75] |
Yanaka, A. Contribution of NRF2 in gastrointestinal protection from oxidative injury. Curr. Pharm. Des. 2018, 24, 2023–2033.
|
[76] |
Singh, R.; Chandrashekharappa, S.; Bodduluri, S.R.; Baby, B.V.; Hegde, B.; Kotla, N.G.; Hiwale, A.A.; Saiyed, T.; Patel, P.; Vijay-Kumar, M.; Langille, M.G.I.; Douglas, G.M.; Cheng, X.; Rouchka, E.C.; Waigel, S.J.; Dryden, G.W.; Alatassi, H.; Zhang, H.G.; Haribabu, B.; Vemula, P.K.; Jala, V.R. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat. Commun. 2019, 10, 89.
|
[77] |
Koh, L.F.; Ong, R.Y.; Common, J.E. Skin microbiome of atopic dermatitis. Allergol. Int. 2022, 71, 31–39.
|
[78] |
Drago, L.; De Grandi, R.; Altomare, G.; Pigatto, P.; Rossi, O.; Toscano, M. Skin microbiota of first cousins affected by psoriasis and atopic dermatitis. Clin. Mol. Allergy. 2016, 14, 2.
|
[79] |
Smits, J.P.H.; Ederveen, T.H.A.; Rikken, G.; van den Brink, N.J.M.; van Vlijmen-Willems, I.M.J.J.; Boekhorst, J.; Kamsteeg, M.; Schalkwijk, J.; van Hijum, S.A.F.T.; Zeeuwen, P.L.J.M.; van den Bogaard, E.H. Targeting the cutaneous microbiota in atopic dermatitis by coal tar via AHR-dependent induction of antimicrobial peptides. J. Investig. Dermatol. 2020, 140, 415–424.e10.
|
[80] |
Uberoi, A.; Bartow-Mckenney, C.; Zheng, Q.; Flowers, L.; Campbell, A.; Knight, S.A.B.; Chan, N.; Wei, M.; Lovins, V.; Bugayev, J.; Horwinski, J.; Bradley, C.; Meyer, J.; Crumrine, D.; Sutter, C.H.; Elias, P.; Mauldin, E.; Sutter, T.R.; Grice, E.A. Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor. Cell Host Microbe. 2021, 29, 1235–1248.e8.
|
[81] |
Armstrong, A.W.; Puig, L.; Joshi, A.; Skup, M.; Williams, D.; Li, J.L.; Betts, K.A.; Augustin, M. Comparison of biologics and oral treatments for plaque psoriasis: a meta-analysis. JAMA Dermatol. 2020, 156, 258–269.
|
[82] |
Mendes Roncada, E.V.; Brambilla, V.R.; Freitas Filitto, B.; Genta, M.P.; Morgado de Abreu, M. Atopic dermatitis as a paradoxical effect of secukinumab for the treatment of psoriasis. Case Rep. Dermatol. 2021, 13, 336–339.
|
[1] | Hui Wu, Gang Ning, Bonan Li, Xing Zhou. Effect of Nrf2 on the testicular microenvironment and its research progress in male diseases [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 513-526. |
[2] | Zhaojing Wang, Qingxia Xu, Jing Xu, Wei Xu, Xiuwei Yang. Anti-oxidative and anti-neuroinflammatory effects of corylin in H2O2-induced HT22 cells and LPS-induced BV2 cells by activating Nrf2/HO-1 and inhibiting NF-κB pathways [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(2): 85-100. |
[3] | Rong Li, Lihua Song, Jie Liu, Yang Bai, Yuming Du, Chunhua Lin, Xiuyuan Su, Zongxue Yu. Cardioprotective effect of Linagliptin on diabetic Wistar rats [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(4): 334-346. |
[4] | Liu He, Jiangli Xu, Limei Guo, Linling Que, Wencheng Yin, Baoshan Cao, Siwang Yu. Nrf2/ARE signaling protects against oxaliplatin-induced hepatotoxicity in mice [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(10): 709-718. |
[5] | Francisco Fuentes, Yury Gomez, Ximena Paredes-Gonzalez, Avantika Barve, Sujit Nair, Siwang Yu, Constance Lay Lay Saw, Ah-Ng Tony Kong. Nrf2-mediated antioxidant and detoxifying enzyme induction by a combination of curcumin and sulforaphane [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(8): 559-569. |
[6] | Qian Yang, Gang Chen, Yang Yang, Xueting Cai, Zhonghua Pang, Chunping Hu, Shuangquan Zhang, Peng Cao. Formononetin ameliorates DSS-induced ulcerative colitis in mice through induction of Nrf2 in colons [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(3): 178-188. |
[7] | Simin Yang, Liyan Ji, Linling Que, Kui Wang, Siwang Yu. Metformin activates Nrf2 signaling and induces the expression of antioxidant genes in skeletal muscle and C2C12 myoblasts [J]. Journal of Chinese Pharmaceutical Sciences, 2014, 23(12): 837-843. |
[8] | Linling Que, Xinzhu Wang, Pengzhan Qian, Baoshan Cao, Kui Wang, Siwang Yu* . Upregulation of Nrf2-regulated gene expression by tBHQ alleviates cyclophosphamide-induced hematotoxicity in mice [J]. Journal of Chinese Pharmaceutical Sciences, 2014, 23(1): 39-45. |
[9] | Lin-Ling Que, Hui-Xia Wang, Bao-Shan Cao, Xiao-Da Yang, Kui Wang, Si-Wang Yu*. The regulation and functions of transcription factor Nrf2 in cancer chemoprevention and chemoresistance [J]. , 2011, 20(1): 5-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||