Journal of Chinese Pharmaceutical Sciences ›› 2022, Vol. 31 ›› Issue (10): 782-797.DOI: 10.5246/jcps.2022.10.068
• Original articles • Previous Articles Next Articles
Weiwei Jiang1,#, Haiyan Quan1,#, Lu He2, Xing Jiang3,*()
Received:
2022-06-23
Revised:
2022-07-15
Accepted:
2022-08-18
Online:
2022-10-31
Published:
2022-10-31
Contact:
Xing Jiang
About author:
Supporting:
Weiwei Jiang, Haiyan Quan, Lu He, Xing Jiang. The diagnostic and prognostic value of CCTs in human hepatocellular carcinoma: a study based on integrated bioinformatics[J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(10): 782-797.
[1] |
Chen, W.Q.; Zheng, R.S.; Baade, P.D.; Zhang, S.W.; Zeng, H.M.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA A Cancer J. Clin. 2016, 66, 115–132.
|
[2] |
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA A Cancer J. Clin. 2015, 65, 87–108.
|
[3] |
Huang, Y.L.; Wang, H.B.; Lian, Y.F.; Wu, X.J.; Zhou, L.; Wang, J.L.; Deng, M.H.; Huang, Y.H. Upregulation of kinesin family member 4A enhanced cell proliferation via activation of Akt signaling and predicted a poor prognosis in hepatocellular carcinoma. Cell Death Dis. 2018, 9, 141.
|
[4] |
Ning, G.; Huang, Y.L.; Zhen, L.M.; Xu, W.X.; Jiao, Q.; Yang, F.J.; Wu, L.N.; Zheng, Y.Y.; Song, J.; Wang, Y.S.; Xie, C.; Peng, L. Transcriptional expressions of Chromobox 1/2/3/6/8 as independent indicators for survivals in hepatocellular carcinoma patients. Aging. 2018, 10, 3450–3473.
|
[5] |
Vallin, J.; Grantham, J. The role of the molecular chaperone CCT in protein folding and mediation of cytoskeleton-associated processes: implications for cancer cell biology. Cell Stress. Chaperones. 2019, 24, 17–27.
|
[6] |
Kaisari, S.; Sitry-Shevah, D.; Miniowitz-Shemtov, S.; Teichner, A.; Hershko, A. Role of CCT chaperonin in the disassembly of mitotic checkpoint complexes. PNAS. 2017, 114, 956–961.
|
[7] |
Tracy, C.M.; Gray, A.J.; Cuéllar, J.; Shaw, T.S.; Howlett, A.C.; Taylor, R.M.; Prince, J.T.; Ahn, N.G.; Valpuesta, J.M.; Willardson, B.M. Programmed cell death protein 5 interacts with the cytosolic chaperonin containing tailless complex polypeptide 1 (CCT) to regulate β-tubulin folding. J. Biol. Chem. 2014, 289, 4490–4502.
|
[8] |
Kasembeli, M.; Lau, W.C.Y.; Roh, S.H.; Eckols, T.K.; Frydman, J.; Chiu, W.; Tweardy, D.J. Modulation of STAT3 folding and function by TRiC/CCT chaperonin. PLoS Biol. 2014, 12, e1001844.
|
[9] |
Svanström, A.; Grantham, J. The molecular chaperone CCT modulates the activity of the actin filament severing and capping protein gelsolin in vitro. Cell Stress. Chaperones. 2016, 21, 55–62.
|
[10] |
Echbarthi, M.; Vallin, J.; Grantham, J. Interactions between monomeric CCTδ and p150Glued: a novel function for CCTδ at the cell periphery distinct from the protein folding activity of the molecular chaperone CCT. Exp. Cell Res. 2018, 370, 137–149.
|
[11] |
Rhodes, D.R.; Yu, J.J.; Shanker, K.; Deshpande, N.; Varambally, R.; Ghosh, D.; Barrette, T.; Pander, A.; Chinnaiyan, A.M. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004, 6, 1–6.
|
[12] |
Tang, Z.F.; Li, C.W.; Kang, B.X.; Gao, G.; Li, C.; Zhang, Z.M. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017, 45, W98–W102.
|
[13] |
Asplund, A.; Edqvist, P.H.D.; Schwenk, J.M.; Pontén, F. Antibodies for profiling the human proteome-The Human Protein Atlas as a resource for cancer research. Proteomics. 2012, 12, 2067–2077.
|
[14] |
Nagy, Á.; Lánczky, A.; Menyhárt, O.; Győrffy, B. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci. Rep. 2018, 8, 9227.
|
[15] |
Menyhárt, O.; Nagy, Á.; Győrffy, B. Determining consistent prognostic biomarkers of overall survival and vascular invasion in hepatocellular carcinoma. Royal Soc. Open Sci. 2018, 5, 181006.
|
[16] |
Gao, J.J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.C.; Jacobsen, A.; Sinha, R.; Larsson, E.; Cerami, E.; Sander, C.; Schultz, N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013, 6, pl1.
|
[17] |
Cerami, E.; Gao, J.J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; Antipin, Y.; Reva, B.; Goldberg, A.P.; Sander, C.; Schultz, N. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404.
|
[18] |
Liu, J.F.; Lichtenberg, T.; Hoadley, K.A.; Poisson, L.M.; Lazar, A.J.; Cherniack, A.D.; Kovatich, A.J.; Benz, C.C.; Levine, D.A.; Lee, A.V.; Omberg, L.; Wolf, D.M.; Shriver, C.D.; Thorsson, V. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell. 2018, 173, 400–416.e11.
|
[19] |
Yu, G.C.; Wang, L.G.; Han, Y.Y.; He, Q.Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS A J. Integr. Biol. 2012, 16, 284–287.
|
[20] |
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; von Mering, C. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2018, 47, D607–D613.
|
[21] |
Roessler, S.; Jia, H.L.; Budhu, A.; Forgues, M.; Ye, Q.H.; Lee, J.S.; Thorgeirsson, S.S.; Sun, Z.T.; Tang, Z.Y.; Qin, L.X.; Wang, X.W. A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer Res. 2010, 70, 10202–10212.
|
[22] |
Wurmbach, E.; Chen, Y.B.; Khitrov, G.; Zhang, W.J.; Roayaie, S.; Schwartz, M.; Fiel, I.; Thung, S.; Mazzaferro, V.; Bruix, J.; Bottinger, E.; Friedman, S.; Waxman, S.; Llovet, J.M. Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology. 2007, 45, 938–947.
|
[23] |
Chen, X.; Cheung, S.T.; So, S.; Fan, S.T.; Barry, C.; Higgins, J.; Lai, K.M.; Ji, J.F.; Dudoit, S.; Ng, I.O.L.; van de Rijn, M.; Botstein, D.; Brown, P.O. Gene expression patterns in human liver cancers. Mol. Biol. Cell. 2002, 13, 1929–1939.
|
[24] |
Pereira, J.H.; McAndrew, R.P.; Sergeeva, O.A.; Ralston, C.Y.; King, J.A.; Adams, P.D. Structure of the human TRiC/CCT Subunit 5 associated with hereditary sensory neuropathy. Sci. Rep. 2017, 7, 3673.
|
[25] |
Tang, N.H.; Cai, X.L.; Peng, L.R.; Liu, H.K.; Chen, Y.Z. TCP1 regulates Wnt7b/β-catenin pathway through P53 to influence the proliferation and migration of hepatocellular carcinoma cells. Signal Transduct. Target. Ther. 2020, 5, 169.
|
[26] |
Yang, J.P.; Zhang, Z.P.; Zhao, Y.; Cheng, J.Z.; Zhao, C.; Wang, Z.G. CCT α is a novel biomarker for diagnosis of laryngeal squamous cell cancer. Sci. Rep. 2019, 9, 11823.
|
[27] |
Guest, S.T.; Kratche, Z.R.; Bollig-Fischer, A.; Haddad, R.; Ethier, S.P. Two members of the TRiC chaperonin complex, CCT2 and TCP1 are essential for survival of breast cancer cells and are linked to driving oncogenes. Exp. Cell Res. 2015, 332, 223–235.
|
[28] |
Liu, Y.J.; Chang, Y.J.; Kuo, Y.T.; Liang, P.H. Targeting β-tubulin/CCT-β complex induces apoptosis and suppresses migration and invasion of highly metastatic lung adenocarcinoma. Carcinogenesis. 2019, 41, 699–710.
|
[29] |
Liu, Y.J.; Kumar, V.; Lin, Y.F.; Liang, P.H. Disrupting CCT-β : β-tubulin selectively kills CCT-β overexpressed cancer cells through MAPKs activation. Cell Death Dis. 2017, 8, e3052.
|
[30] |
Showalter, A.E.; Martini, A.C.; Nierenberg, D.; Hosang, K.; Fahmi, N.A.; Gopalan, P.; Khaled, A.S.; Zhang, W.; Khaled, A.R. Investigating Chaperonin-Containing TCP-1 subunit 2 as an essential component of the chaperonin complex for tumorigenesis. Sci. Rep. 2020, 10, 798.
|
[31] |
Chang, Y.X.; Lin, Y.F.; Chen, C.L.; Huang, M.S.; Hsiao, M.; Liang, P.H. Chaperonin-containing TCP-1 promotes cancer chemoresistance and metastasis through the AKT-GSK3β-β-catenin and XIAP-survivin pathways. Cancers. 2020, 12, 3865.
|
[32] |
Qu, H.B.; Zhu, F.; Dong, H.Y.; Hu, X.Q.; Han, M.L. Upregulation of CCT-3 induces breast cancer cell proliferation through miR-223 competition and Wnt/β-catenin signaling pathway activation. Front. Oncol. 2020, 10, 533176.
|
[33] |
Temiz, E.; Koyuncu, İ.; Sahin, E. CCT3 suppression prompts apoptotic machinery through oxidative stress and energy deprivation in breast and prostate cancers. Free. Radic. Biol. Med. 2021, 165, 88–99.
|
[34] |
Cui, X. Overexpression of chaperonin containing TCP1, subunit 3 predicts poor prognosis in hepatocellular carcinoma. World J. Gastroenterol. 2015, 21, 8588.
|
[35] |
Liu, Y.; Zhang, X.; Lin, J.F.; Chen, Y.X.; Qiao, Y.X.; Guo, S.S.; Yang, Y.Y.; Zhu, G.Q.; Pan, Q.H.; Wang, J.Y.; Sun, F.Y. CCT3 acts upstream of YAP and TFCP2 as a potential target and tumour biomarker in liver cancer. Cell Death Dis. 2019, 10, 644.
|
[36] |
Kim, A.R.; Choi, K.W. TRiC/CCT chaperonins are essential for organ growth by interacting with insulin/TOR signaling in Drosophila. Oncogene. 2019, 38, 4739–4754.
|
[37] |
Ryu, H.G.; Kim, S.; Lee, S.; Lee, E.; Kim, H.J.; Kim, D.Y.; Kim, K.T. HNRNP Q suppresses polyglutamine huntingtin aggregation by post-transcriptional regulation of vaccinia-related kinase 2. J. Neurochem. 2019, 149, 413–426.
|
[38] |
Pavel, M.; Imarisio, S.; Menzies, F.M.; Jimenez-Sanchez, M.; Siddiqi, F.H.; Wu, X.T.; Renna, M.; O’Kane, C.J.; Crowther, D.C.; Rubinsztein, D.C. CCT complex restricts neuropathogenic protein aggregation via autophagy. Nat. Commun. 2016, 7, 13821.
|
[39] |
Antona, V.; Scalia, F.; Giorgio, E.; Radio, F.C.; Brusco, A.; Oliveri, M.; Corsello, G.; Lo Celso, F.; Vadalà, M.; Conway de Macario, E.; Macario, A.J.L.; Cappello, F.; Giuffrè, M. A novel CCT5 missense variant associated with early onset motor neuropathy. Int. J. Mol. Sci. 2020, 21, 7631.
|
[40] |
Darrow, M.C.; Sergeeva, O.A.; Isas, J.M.; Galaz-Montoya, J.G.; King, J.A.; Langen, R.; Schmid, M.F.; Chiu, W. Structural mechanisms of mutant huntingtin aggregation suppression by the synthetic chaperonin-like CCT5 complex explained by cryoelectron tomography. J. Biol. Chem. 2015, 290, 17451–17461.
|
[41] |
He, J.C.; McLaughlin, R.P.; van der Beek, L.; Canisius, S.; Wessels, L.; Smid, M.; Martens, J.W.M.; Foekens, J.A.; Zhang, Y.H.; van de Water, B. Integrative analysis of genomic amplification-dependent expression and loss-of-function screen identifies ASAP1 as a driver gene in triple-negative breast cancer progression. Oncogene. 2020, 39, 4118–4131.
|
[42] |
Zhu, Q.L.; Wang, T.F.; Cao, Q.F.; Zheng, M.H.; Lu, A.G. Inhibition of cytosolic chaperonin CCTζ-1 expression depletes proliferation of colorectal carcinoma in vitro. J. Surg. Oncol. 2010, 102, 419–423.
|
[43] |
Li, B.; Lu, X.G.; Ma, C.; Sun, S.J.; Shu, X.Y.; Wang, Z.Y.; Sun, W.Q. Long non-coding RNA NEAT1 promotes human glioma tumor progression via miR-152-3p/CCT6A pathway. Neurosci. Lett. 2020, 732, 135086.
|
[44] |
Hallal, S.; Russell, B.P.; Wei, H.; Lee, M.Y.T.; Toon, C.W.; Sy, J.; Shivalingam, B.; Buckland, M.E.; Kaufman, K.L. Extracellular vesicles from neurosurgical aspirates identifies chaperonin containing TCP1 subunit 6A as a potential glioblastoma biomarker with prognostic significance. Proteomics. 2019, 19, e1800157.
|
[45] |
Zhang, T.; Shi, W.; Tian, K.; Kong, Y.S. Chaperonin containing t-complex polypeptide 1 subunit 6A correlates with lymph node metastasis, abnormal carcinoembryonic antigen and poor survival profiles in non-small cell lung carcinoma. World J. Surg. Oncol. 2020, 18, 156.
|
[46] |
Zeng, G.F.; Wang, J.L.; Huang, Y.L.; Lian, Y.F.; Chen, D.M.; Wei, H.; Lin, C.S.; Huang, Y.H. Overexpressing CCT6A contributes to cancer cell growth by affecting the G1-to-S phase transition and predicts A negative prognosis in hepatocellular carcinoma. Oncotargets Ther. 2019, 12, 10427–10439.
|
[47] |
Ying, Z.; Tian, H.; Li, Y.; Lian, R.; Li, W.; Wu, S.S.; Zhang, H.Z.; Wu, J.H.; Liu, L.; Song, J.W.; Guan, H.Y.; Cai, J.C.; Zhu, X.; Li, J.; Li, M.F. CCT6A suppresses SMAD2 and promotes prometastatic TGF-β signaling. J. Clin. Investig. 2017, 127, 1725–1740.
|
[48] |
Wang, L.W.; Zhou, W.; Li, H.; Yang, H.; Shan, N.C. Clinical significance, cellular function, and potential molecular pathways of CCT7 in endometrial cancer. Front. Oncol. 2020, 10, 1468.
|
[49] |
Lin, X.D.; Lin, N.; Lin, T.T.; Wu, Y.P.; Huang, P.; Ke, Z.B.; Lin, Y.Z.; Chen, S.H.; Zheng, Q.S.; Wei, Y.; Xue, X.Y.; Lin, R.J.; Xu, N. Identification of marker genes and cell subtypes in castration-resistant prostate cancer cells. J. Cancer. 2021, 12, 1249–1257.
|
[50] |
Liu, P.; Kong, L.M.; Jin, H.Y.; Wu, Y.H.; Tan, X.D.; Song, B. Differential secretome of pancreatic cancer cells in serum-containing conditioned medium reveals CCT8 as a new biomarker of pancreatic cancer invasion and metastasis. Cancer Cell Int. 2019, 19, 262.
|
[51] |
Yang, X.J.; Ren, H.R.; Shao, Y.H.; Sun, Y.; Zhang, L.H.; Li, H.L.; Zhang, X.L.; Yang, X.M.; Yu, W.W.; Fu, J. Chaperonin-containing T‑complex protein 1 subunit 8 promotes cell migration and invasion in human esophageal squamous cell carcinoma by regulating α-actin and β-tubulin expression. Int. J. Oncol. 2018, 6, 2021–2030.
|
[52] |
Huang, X.D.; Wang, X.X.; Cheng, C.; Cai, J.; He, S.; Wang, H.; Liu, F.; Zhu, C.L.; Ding, Z.M.; Huang, X.T.; Zhang, T.Y.; Zhang, Y.X. Chaperonin containing TCP1, subunit 8 (CCT8) is upregulated in hepatocellular carcinoma and promotes HCC proliferation. APMIS. 2014, 122, 1070–1079.
|
[1] | Ipargul Hafiz, Zhaozhi Wang, Hongji He, Zhezhe Li, Mei Wang. Exploring the mechanism of Peganum harmala L. seeds on hepatocellular carcinoma based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(7): 517-529. |
[2] | Axi Shi, Tiantian Shen, Wenbin Xia, Lili Xi, Lijun Wang, Yuhui Wei. Icaritin enhances sorafenib-induced apoptosis through a mitochondria-dependent pathway [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(12): 928-937. |
[3] | Jingquan Li, Zhenzhen Yang, Tingting Meng, Xianrong Qi . The use of cationic liposomes to co-deliver docetaxel and siRNA for targeted therapy of hepatocellular carcinoma [J]. Journal of Chinese Pharmaceutical Sciences, 2014, 23(10): 667-673. |
[4] | Yong-Jun Liu, Zhi-Jin Chen, Na Zhang* . Novel nanovectors as liver targeting MRI contrast agents [J]. , 2011, 20(2): 105-117. |
[5] | Li-Hui Wang1,2, Hui-Hui Zeng1,2* . Investigation of the redox status in H22 hepatocellular carcinoma xenografts treated by a novel anticancer drug——ethaselen [J]. , 2009, 18(3): 245-251. |
[6] | Zhi-Rong Zhang, Gong-Tie Liao, Shi-Xiang Hou. Targeting Effect Studyof 3H-Mitoxantrone Nanosphereson Hepatocellular Carcinoma (HCC) Modelin Nude Mice [J]. , 1995, 4(4): 181-186. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||