Journal of Chinese Pharmaceutical Sciences ›› 2021, Vol. 30 ›› Issue (10): 813-821.DOI: 10.5246/jcps.2021.10.069
• Original articles • Previous Articles Next Articles
Hongzhuang Zhang1,2,#, Zhiwei Yang1,#, Jianghe Zhang1,#, Yiming Zhang1, Shike Hou2, Zhenguo Wang2, Li Yan2,*(), Dongli Fan1,*()
Received:
2021-04-18
Revised:
2021-05-20
Accepted:
2021-06-19
Online:
2021-10-24
Published:
2021-10-24
Contact:
Li Yan, Dongli Fan
About author:
Supporting:
Hongzhuang Zhang, Zhiwei Yang, Jianghe Zhang, Yiming Zhang, Shike Hou, Zhenguo Wang, Li Yan, Dongli Fan. Discussion on the mechanism of Salvia miltiorrhiza in treating pathological scars based on network pharmacology[J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(10): 813-821.
[1] |
Yu, L.J.; Wang, X.J.; Long, X. Advances in mechanisms for prevention and treatment of pathological scars with mesenchymal stem cells. Acta Acad. Med. Sin. 2017, 39, 573–577.
|
[2] |
Chiang, R.S.; Borovikova, A.A.; King, K.; Banyard, D.A.; Lalezari, S.; Toranto, J.D.; Paydar, K.Z.; Wirth, G.A.; Evans, G.R.D.; Widgerow, A.D. Current concepts related to hypertrophic scarring in burn injuries. Wound Repair Regen. 2016, 24, 466–477.
|
[3] |
Huang, J.W.; Han, X.; Zhao, X.; Li, X.B.; Dong, X.Z.; An, L.F.; Ji, S.X.; Xia, X.H. Treatment and improvement of scar hyperplasia by panax notoginseng based on network pharmacology study on molecular mechanisms. Int. J. Trad. Chin. Med. 2019, 41, 1353–1359.
|
[4] |
Xu, X.Q.; Yang, S.L.; Wang, J.; Lai, J.H.; Guo, S.Y.; Wang, F.; Chen, Q.F.; Shi, J. Multi-target analysis of Salvianolic acid B in the treatment of hypertrophic scar. J. Guangdong Pharm. Univ. 2019, 35, 523–528.
|
[5] |
Wu, Z.Y.; Luo, S.J.; Jiang, L.M. Effect of cryptotanshinone on hypertrophic scar tissue of rabbit ear. Guangxi Med. 2008, 7, 1012–1013.
|
[6] |
Lai, J.H.; Xu, X.Q.; Shi, J.; Guo, S.Y. Research progress on the formation mechanism of hypertrophic scar and treatment of Salvia miltiorrhiza. J. Guangdong Pharm. Univ. 2019, 35, 707–713.
|
[7] |
Sun, G.F.; Zhang, X.F.; Chen, Y.F.; Feng, D.X. ShengjiYuhong ointment inhibits the proliferation and collagen secretion of human hypertrophic scar fibroblasts by down regulating TGF-β1/Smads. Lishizhen Med. Mater. Med. Res. 2016, 27, 1590–1593.
|
[8] |
Guan, Z.Q.; Chen, G.S.; Feng, L.C.; Zhao, L.; Zhai, X.X. Analysis of traditional Chinese medicine treatment of pathological scar based on literature research. Chin. Arch. Tradit. Chin. Med. 2018, 36, 1803–1805.
|
[9] |
Xu, J.P.; Wei, K.H.; Zhang, G.J.; Lei, L.J.; Yang, D.W.; Wang, W.L.; Han, Q.H.; Xia, Y.; Bi, Y.Q.; Yang, M.; Li, M.H. Ethnopharmacology, phytochemistry, and pharmacology of Chinese Salvia species: a review. J. Ethnopharmacol. 2018, 225, 18–30.
|
[10] |
Shen, W.L. Protective effects of tanshinone IIA derivative on myocardial ischemia/reperfusion injury in rats. J. Chin. Pharm. Sci. 2018, 27, 1–13.
|
[11] |
Chen, G.; Liang, Y.M.; Liang, X.; Li, Q.F.; Liu, D.L. Tanshinone IIA inhibits proliferation and induces apoptosis through the downregulation of survivin in keloid fibroblasts. Ann. Plast. Surg. 2016, 76, 180–186.
|
[12] |
Chen, G.; Liang, Y.M.; Li Q.F. Effect of Tanshinone IIA on Cell Proliferation, Apoptosis and Cell Cycle of Fibroblasts Derived from Keloid. J. Tissue Enginee. Rec. Surgery. 2012, 8, 73–77.
|
[13] |
Zhang, Y.F.; Wang, J.; Zhou, S.Z.; Xie, Z.B.; Wang, C.D.; Gao, Y.; Zhou, J.; Zhang, X.L.; Li, Q.F. Flavones hydroxylated at 5, 7, 3' and 4' ameliorate skin fibrosis via inhibiting activin receptor-like kinase 5 kinase activity. Cell Death Dis. 2019, 10, 124.
|
[14] |
Ye, F.L. HIF-1α expresion in keloid and its corelation with angiogenesis, inflammatory response and apoptosis. J. Hainan Med. College. 2017, 23, 2442–2444+2448.
|
[15] |
Wilgus, T.A. Vascular endothelial growth factor and cutaneous scarring. Adv. Wound Care. 2019, 8, 671–678.
|
[16] |
Xu, X.Q.; Han, B.; Lai, J.H.; Lin, Y.J.; Shi, J. Effect and mechanism of tanshinone IIA on TGF-β1 induced human skin fibroblast proliferation. Chin. Herbal Med. 2020, 51, 4685–4690.
|
[17] |
Ogawa, R. Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis. Int. J. Mol. Sci. 2017, 18, 606.
|
[18] |
Jundi, K.; Greene, C.M. Transcription of interleukin-8: how altered regulation can affect cystic fibrosis lung disease. Biomolecules. 2015, 5, 1386–1398.
|
[19] |
Morris Jr, M.W.; Allukian III, M.; Herdrich, B.J.; Caskey, R.C.; Zgheib, C.; Xu, J.W.; Dorsett-Martin, W.; Mitchell, M.E.; Liechty, K.W. Modulation of the inflammatory response by increasing fetal wound size or interleukin-10 overexpression determines wound phenotype and scar formation. Wound Repair Regen. 2014, 22, 406–414.
|
[20] |
Zhang, W.; Bai, X.Z.; Zhao, B.; Li, Y.; Zhang, Y.J.; Li, Z.Z.; Wang, X.J.; Luo, L.; Han, F.; Zhang, J.L.; Han, S.C.; Cai, W.X.; Su, L.L.; Tao, K.; Shi, J.H.; Hu, D.H. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway. Exp. Cell Res. 2018, 370, 333–342.
|
[21] |
Mari, W.; Alsabri, S.G.; Tabal, N.; Younes, S.; Sherif, A.; Simman, R. Novel insights on understanding of keloid scar: article review. J. Am. Coll. Clin. Wound Specialists. 2015, 7, 1–7.
|
[22] |
Wei, B.; Fan, J.C.; Yan, L.; Luo Q.; Zhang, J.Y.; Hou, H.L.; Lv, X.Y.; Cao, R.; Wang, C.M. Effect of PTGS2 knockdown on gene expression profile of skin fibroblasts. Basic Med. Clinic. 2012, 32, 396–401.
|
[1] | Mengyao Wu, Lu Liu, Peng Zhang, Lele Zhang, Yun Gong, Xiuwei Yang. Exploring the mechanism of Buxue Yimu Pills on postpartum abdominal pain through network pharmacology and experimental validation [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 691-703. |
[2] | Ping Shang, Lin Liu, Yi Fang. Investigating the mechanism of action of Gui Zhi Fu Ling Wan in the treatment of endometriosis based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 704-719. |
[3] | Gedi Zhang, Gengxin Liu, Ziyou Yan. Therapeutic efficacy evaluation and mechanism of action based on meta-analysis and network pharmacology of Li Chong Decoction (Bolus) for cancer treatment [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 720-735. |
[4] | Dongyan Wu, Xiaodan Wang, Jinmiao Chai, Qinqing Li, Yue Li, Mei Bi, Wanwei Gui, Huimin Cao. Study on the mechanism of Danggui Buxue decoction in the treatment of diabetic retinopathy based on network pharmacology and experiment [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 527-538. |
[5] | Huan Yan, Jian Wang, Hao Fu, Min Yang, Miao Qu, Zhie Fang. Discussion on the potential target and mechanism of Dachaihu Decoction in treating hyperlipidemia based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(6): 446-459. |
[6] | Mengya Wang, Kuanyou Zhang, Xin Chen, Hao Fu, Shouchun Peng. Study on the mechanism of Rhinoceros Horn and Rehmannia Decoction in the treatment of systemic lupus erythematosus based on the method of network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 351-359. |
[7] | Guangzhi Shen, Xingang Cui, Zhimin Na, Yulong Zou, Guihua Zou. A network pharmacology approach to explore the pharmacological mechanism of Epimedium brevicornum in sexual dysfunction [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 379-391. |
[8] | Min Ao, Minglan Bao, Yaxing Hou, Ying Yue, Huifang Li, Guohua Wu, Su Ri Ga La Tu. Study on the mechanism of Mongolian medicine Herba Lomatognii against acute liver injury based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 268-282. |
[9] | Yajing Li, Yawen Bai, Yu Du, Changhong Yan, Chunjie Ma, Lining Sun, Fengyue Bu, Haoyang Yan. Yu Ping Feng Powder for chronic glomerulonephritis treatment: A meta-analysis and network pharmacology study [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(12): 1006-1026. |
[10] | Zhiyong Sun, Shuli Gao, Yang Zhang, Gangqiang Xue, Zilin Yuan, Shaonan Wang. Study on the potential mechanism of Pu Gong Ying in treating breast hyperplasia based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 893-910. |
[11] | Yuqian Zhang, Haiying Niu, Yiran Jin. Network pharmacology-based strategy to investigate anticancer mechanisms of Catharanthus roseus (L.) G. Don [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 911-922. |
[12] | Daiying Zhou, Jing Chen, Zhigang Lv. Network pharmacology prediction and molecular docking-based study on the mechanism of Erigeron breviscapus in the treatment of age-related macular degeneratio [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 923-934. |
[13] | Dongsheng Wei, Xiaosheng Liu, Luzhen Li, Jiajie Qi, Yuxuan Wang, Zhe Zhang. Unraveling the biological and immunological mechanisms of safflower-danshen in the treatment of coronary atherosclerotic heart disease: a comprehensive bioinformatics and single-cell sequencing approach [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(10): 796-812. |
[14] | Ning Ding, Tao Zhang, Ji Luo, Haochen Liu, Yu Deng, Yongheng He. Study on the mechanism of Baishao Qiwu Decoction in the treatment of colorectal cancer based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(1): 17-31. |
[15] | Ipargul Hafiz, Zhaozhi Wang, Hongji He, Zhezhe Li, Mei Wang. Exploring the mechanism of Peganum harmala L. seeds on hepatocellular carcinoma based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(7): 517-529. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||