[1] Rybak, M.J. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin. Infect. Dis. 2006, 42, S35-S39.
[2] Rybak, M.; Lomaestro, B.; Rotschafer, J.C.; Moellering, R. Jr, Craig, W.; Billeter, M.; Dalovisio, J.R.; Levine, D.P. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American society of health-system pharmacists, the infectious diseases society of America, and the society of infectious diseases pharmacists. Am. J. Health-Syst. Pharm. 2009, 66, 82-98.
[3] Matsumoto, K.; Takesue, Y.; Ohmagari, N.; Mochizuki, T.; Mikamo, H.; Seki, M.; Takakura, S.; Tokimatsu, I.; Takahashi, Y.; Kasahara, K.; Okada, K.; Igarashi, M.; Kobayashi, M.; Hamada, Y.; Kimura, M.; Nishi, Y.; Tanigawara, Y.; Kimura, T. Practice guidelines for therapeutic drug monitoring of vancomycin: a consensus review of the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. J. Infect. Chemother. 2013, 19, 365-380.
[4] Rodvold, K.A.; Blum, R.A.; Fischer, J.H.; Zokufa, H.Z.; Rotschafer, J.C.; Crossley, K.B.; Riff, L.J. Vancomycin pharmacokinetics in patients with various degrees of renal function. Antimicrob. Agents Chemother. 1988, 32, 848-852.
[5] Sánchez, J.L.; Dominguez, A.R.; Lane, J.R.; Anderson, P.O.; Capparelli, E.V.; Cornejo-Bravo, J.M. Population pharmacokinetics of vancomycin in adult and geriatric patients: comparison of eleven approaches. Int. J. Clin. Pharmacol. Ther. 2010, 48, 525-533.
[6] Guay, D.R.; Vance-Bryan, K.; Gilliland, S.; Rodvold, K.; Rotschafer, J. Comparison of vancomycin pharmacokinetics in hospitalized elderly and young patients using a Bayesian forecaster. J. Clin. Pharmacol. 1993, 33, 918-922.
[7] Bourguignon, L.; Cazaubon, Y.; Debeurme, G.; Loue, C.; Ducher, M.; Goutelle, S. Pharmacokinetics of vancomycin in elderly patients aged over 80 years. Antimicrob. Agents Chemother. 2016, 60, 4563-4567.
[8] Kim, A.J.; Lee, J.Y.; Choi, S.A.; Shin, W.G. Comparison of the pharmacokinetics of vancomycin in neurosurgical and non-neurosurgical patients. Int. J. Antimicrob. Agents. 2016, 48, 381-387.
[9] Lin Wu, F.L.; Liu, S.S.; Yang, T.Y.; Win, M.F.; Lin, S.W.; Huang, C.F.; Wang, K.C.; Shen, L.J. A larger dose of vancomycin is required in adult neurosurgical intensive care unit patients due to augmented clearance. Ther. Drug Monit. 2015, 37, 609-618.
[10] Lin, W.W.; Wu, W.; Jiao, Z.; Lin, R.F.; Jiang, C.Z.; Huang, P.F.; Liu, Y.W.; Wang, C.L. Population pharmacokinetics of vancomycin in adult Chinese patients with post-craniotomy meningitis and its application in individualised dosage regimens. Eur. J. Clin. Pharmacol. 2016, 72, 29-37.
[11] Da, L.; Hong, S. A study of drug therapy problems in pharmaceutical care. J. Chin. Pharm. Sci. 2009, 18, 354-357.
[12] Thomson, A.H.; Staatz, C.E.; Tobin, C.M.; Gall, M.; Lovering, A.M. Development and evaluation of vancomycin dosage guidelines designed to achieve new target concentrations. J. Antimicrob. Chemother. 2009, 63, 1050-1057.
[13] Kullar, R.; Leonard, S.N.; Davis, S.L.; Delgado, G. Jr, Pogue, J.M.; Wahby, K.A.; Falcione, B.; Rybak, M.J. Validation of the effectiveness of a vancomycin nomogram in achieving target trough concentrations of 15-20 mg/L suggested by the vancomycin consensus guidelines. Pharmacotherapy. 2011, 31, 441-448.
[14] Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; J Rybak, M.; Talan, D.A.; Chambers, H.F. Clinical practice guidelines by the infectious diseases society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: executive summary. Clin. Infect. Dis. 2011, 52, 285-292.
[15] Bautista, J.; Huster, M.; Osterhaus, M. Syva Emit®2000 vancomycin assay. Ther. Drug Monit. 1993, 15, 152.
[16] Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.III, Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; Coresh, J.; CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604-612.
[17] Glatard, A.; Bourguignon, L.; Jelliffe, R.W.; Maire, P.; Neely, M.N.; Goutelle, S. Influence of renal function estimation on pharmacokinetic modeling of vancomycin in elderly patients. Antimicrob. Agents Chemother. 2015, 59, 2986-2994.
[18] Mandema, J.W.; Verotta, D.; Sheiner, L.B. Building population pharmacokinetic: pharmacodynamic models. I. Models for covariate effects. J. Pharmacokinet. Biopharm. 1992, 20, 511-528.
[19] Ette, E.I. Stability and performance of a population pharmacokinetic model. J. Clin. Pharmacol. 1997, 37, 486-495.
[20] Brendel, K.; Comets, E.; Laffont, C.; Laveille, C.; Mentré, F. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. Pharm. Res. 2006, 23, 2036-2049.
[21] Comets, E.; Brendel, K.; Mentré, F. Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: the npde add-on package for R. Comput. Methods Programs Biomed. 2008, 90, 154-166.
[22] Lodise, T.P.; Lomaestro, B.; Graves, J.; Drusano, G.L. Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob. Agents Chemother. 2008, 52, 1330-1336.
[23] van der Meer, A.F.; Marcus, M.A.; Touw, D.J.; Proost, J.H.; Neef, C. Optimal sampling strategy development methodology using maximum a posteriori Bayesian estimation. Ther. Drug Monit. 2011, 33, 133-146.
[24] Bondareva, I.B.; Jelliffe, R.W.; Andreeva, O.V.; Bondareva, K.I. Predictability of individualized dosage regimens of carbamazepine and valproate mono- and combination therapy. J. Clin. Pharm. Ther. 2011, 36, 625-636.
[25] He, X.R.; Liu, Z.H.; Ji, S.M.; Liu, T.T.; Li, L.; Zhou, T.Y.; Lu, W. Population pharmacokinetics of vancomycin and prediction of pharmacodynamics in the Chinese people. Acta Pharm. Sin. 2014, 49, 1528-1535.
[26] Scaglione, F.; Paraboni, L. Pharmacokinetics/pharmacodynamics of antibacterials in the Intensive Care Unit: setting appropriate dosing regimens. Int. J. Antimicrob. Agents. 2008, 32, 294-301.
[27] Ott, L.; McClain, C.J.; Gillespie, M.; Young, B. Cytokines and metabolic dysfunction after severe head injury. J. Neurotrauma. 1994, 11, 447-472.
[28] Just, A. Mechanisms of renal blood flow autoregulation: dynamics and contributions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R1-R17.
[29] Jennett, B.; Bond, M. Assessment of outcome after severe brain damage. Lancet. 1975, 1, 480-484.
[30] Sadoh, S.; Tsuji, Y.; Tsukamoto, K. Correlation of pharmacokinetic parameters with serum vancomycin concentration in elderly patients with malignancies. Yakugaku Zasshi. 2010, 130, 69-73.
[31] Teramachi, H.; Hatakeyama, H.; Matsushita, R.; Imai, Y.; Miyamoto, K.; Tsuji, A. Evaluation of predictability for vancomycin dosage regimens by the Bayesian method with Japanese population pharmacokinetic parameters. Biol. Pharm. Bull. 2002, 25, 1333-1338.
[32] Purwonugroho, T.A.; Chulavatnatol, S.; Preechagoon, Y.; Chindavijak, B.; Malathum, K.; Bunuparadah, P. Population pharmacokinetics of vancomycin in Thai patients. Sci. World J. 2012, 2012, 762649.
[33] Matsushita, K.; Mahmoodi, B.K.; Woodward, M.; Emberson, J.R.; Jafar, T.H.; Jee, S.H.; Polkinghorne, K.R.; Shankar, A.; Smith, D.H.; Tonelli, M.; Warnock, D.G.; Wen, C.P.; Coresh, J.; Gansevoort, R.T.; Hemmelgarn, B.R.; Levey, A.S.; the Chronic Kidney Disease Prognosis Consortium, F. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA. 2012, 307, 1941-1951.
[34] David-Neto, E.; Triboni, A.H.; Ramos, F.; Agena, F.; Galante, N.Z.; Altona, M.; Lemos, F.B.; Sapienza, M.T.; Nahas, W.C. Evaluation of MDRD4, CKD-EPI, BIS-1, and modified Cockcroft-Gault equations to estimate glomerular filtration rate in the elderly renal-transplanted recipients. Clin. Transplant. 2016, 30, 1558-1563.
[35] Cartet-Farnier, E.; Goutelle-Audibert, L.; Maire, P.; De la Gastine, B.; Goutelle, S. Implications of using the MDRD or CKD-EPI equation instead of the Cockcroft-Gault equation for estimating renal function and drug dosage adjustment in elderly patients. Fundam. Clin. Pharmacol. 2017, 31, 110-119.
[36] Park, S.Y.; Lee, K.W. Renal assessment using CKD-EPI equation is useful as an early predictor of contrast- induced nephropathy in elderly patients with cancer. J. Geriatr. Oncol. 2017, 8, 44-49.
[37] Staatz, C.E.; Byrne, C.; Thomson, A.H. Population pharmacokinetic modelling of gentamicin and vancomycin in patients with unstable renal function following cardiothoracic surgery. Br. J. Clin. Pharmacol. 2006, 61, 164-176.
[38] Tanaka, A.; Aiba, T.; Otsuka, T.; Suemaru, K.; Nishimiya, T.; Inoue, T.; Murase, M.; Kurosaki, Y.; Araki, H. Population pharmacokinetic analysis of vancomycin using serum cystatin C as a marker of renal function. Antimicrob. Agents Chemother. 2010, 54, 778-782.
[39] Revilla, N.; Martín-Suárez, A.; Pérez, M.P.; González, F.M.; del Mar Fernández de Gatta, M. Vancomycin dosing assessment in intensive care unit patients based on a population pharmacokinetic/pharmacodynamic simulation. Br. J. Clin. Pharmacol. 2010, 70, 201-212.
[40] Chung, J.Y.; Jin, S.J.; Yoon, J.H.; Song, Y.G. Serum cystatin C is a major predictor of vancomycin clearance in a population pharmacokinetic analysis of patients with normal serum creatinine concentrations. J. Korean Med. Sci. 2013, 28, 48-54.
[41] Holford, N.H.; Buclin, T. Safe and effective variability-a criterion for dose individualization. Ther. Drug Monit. 2012, 34, 565-568. |