Journal of Chinese Pharmaceutical Sciences ›› 2025, Vol. 34 ›› Issue (6): 519-529.DOI: 10.5246/jcps.2025.06.039
• Original articles • Previous Articles
Zhengrong Wu, Jingsi Zhao, Peng Jing, Dian He*()
Received:
2024-12-08
Revised:
2025-01-10
Accepted:
2025-02-15
Online:
2025-07-03
Published:
2025-07-03
Contact:
Dian He
Supporting: /attached/file/20250704/20250704010718_379.pdf
Zhengrong Wu, Jingsi Zhao, Peng Jing, Dian He. Innovative hydroxamic acid-derived HDAC inhibitors: design, synthesis, and anticancer evaluation with diverse Zn2+-binding groups[J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(6): 519-529.
[1] |
Wang, F.; Lu, W.; Zhang, T.; Dong, J.Y.; Gao, H.P.; Li, P.F.; Wang, S.C.; Zhang, J. Development of novel ferulic acid derivatives as potent histone deacetylase inhibitors. Bioorg. Med. Chem. 2013, 21, 6973–6980.
|
[2] |
Peart, M.J.; Smyth, G.K.; van Laar, R.K.; Bowtell, D.D.; Richon, V.M.; Marks, P.A.; Holloway, A.J.; Johnstone, R.W. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc. Natl. Acad Sci. U.S.A. 2005, 102, 3697–3702.
|
[3] |
Zagni, C.; Floresta, G.; Monciino, G.; Rescifina, A. The search for potent, small-molecule HDACIs in cancer treatment: a decade after vorinostat. Med. Res. Rev. 2017, 37, 1373–1428.
|
[4] |
Manal, M.; Chandrasekar, M.J.N.; Gomathi Priya, J.; Nanjan, M.J. Inhibitors of histone deacetylase as antitumor agents: a critical review. Bioorg. Chem. 2016, 67, 18–42.
|
[5] |
Zagni, C.; Citarella, A.; Oussama, M.; Rescifina, A.; Maugeri, A.; Navarra, M.; Scala, A.; Piperno, A.; Micale, N. Hydroxamic acid-based histone deacetylase (HDAC) inhibitors bearing a pyrazole scaffold and a cinnamoyl linker. Int. J. Mol. Sci. 2019, 20, E945.
|
[6] |
West, A.C.; Johnstone, R.W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Invest. 2014, 124, 30–39.
|
[7] |
Roy, R.; Ria, T.; RoyMahaPatra, D.; Sk, U.H. Single inhibitors versus dual inhibitors: role of HDAC in cancer. ACS Omega. 2023, 8, 16532–16544.
|
[8] |
Li, Y.X.; Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. C.S. Harb. Perspect. Med. 2016, 6, 026831.
|
[9] |
Dangi, N.; Sharma, S. Cancer chemotherapy with novel bioactive natural products. J. Chin. Pharm. Sci. 2022, 31, 589-607.
|
[10] |
Tazzari, V.; Cappelletti, G.; Casagrande, M.; Perrino, E.; Renzi, L.; Del Soldato, P.; Sparatore, A. New aryldithiolethione derivatives as potent histone deacetylase inhibitors. Bioorg. Med. Chem. 2010, 18, 4187–4194.
|
[11] |
Cheng,W.W.; Zhang, D.M.; Zheng, Q.; Li, Z,J.; Meng, X.B. Design, synthesis and biological evaluation of novel HDAC inhibitors: sulphur-containing zinc binding groups. J. Chin. Pharm. Sci. 2019, 28, 408–421.
|
[12] |
Yao, Y.W.; Liao, C.Z.; Li, Z.; Wang, Z.; Sun, Q.; Liu, C.P.; Yang, Y.; Tu, Z.C.; Jiang, S. Design, synthesis, and biological evaluation of 1,3-disubstituted-pyrazole derivatives as new class I and IIb histone deacetylase inhibitors. Eur. J. Med. Chem. 2014, 86, 639–652.
|
[13] |
Cai, M.; Hu, J.; Tian, J.L.; Yan, H.; Zheng, C.G.; Hu, W.L. Novel hybrids from N-hydroxyarylamide and indole ring through click chemistry as histone deacetylase inhibitors with potent antitumor activities. Chin. Chem. Lett. 2015, 26, 675–680.
|
[14] |
Peng, F.W.; Wu, T.T.; Ren, Z.W.; Xue, J.Y.; Shi, L. Hybrids from 4-anilinoquinazoline and hydroxamic acid as dual inhibitors of vascular endothelial growth factor receptor-2 and histone deacetylase. Bioorg. Med. Chem. Lett. 2015, 25, 5137–5141.
|
[15] |
Yang, W.; Li, L.X.; Ji, X.; Wu, X.W.; Su, M.B.; Sheng, L.; Zang, Y.; Li, J.; Liu, H. Design, synthesis and biological evaluation of 4-anilinothieno[2, 3-d]pyrimidine-based hydroxamic acid derivatives as novel histone deacetylase inhibitors. Bioorg. Med. Chem. 2014, 22, 6146–6155.
|
[16] |
Paris, M.; Porcelloni, M.; Binaschi, M.; Fattori, D. Histone deacetylase inhibitors: from bench to clinic. J. Med. Chem. 2008, 51, 3330.
|
[17] |
Jin, K.; Li, S.S.; Li, X.G.; Zhang, J.; Xu, W.F.; Li, X.C. Design, synthesis and preliminary biological evaluation of indoline-2,3-dione derivatives as novel HDAC inhibitors. Bioorg. Med. Chem. 2015, 23, 4728–4736.
|
[18] |
Liu, T.T.; Wan, Y.C.; Xiao, Y.L.; Xia, C.C.; Duan, G.Y. Dual-target inhibitors based on HDACs: novel antitumor agents for cancer therapy. J. Med. Chem. 2020, 63, 8977–9002.
|
[19] |
Ververis, K.; Hiong, A.; Karagiannis, T.C.; Licciardi, P.V. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biologics. 2013, 7, 47–60.
|
[20] |
Vaughan, R.M.; Kupai, A.; Rothbart, S.B. Chromatin regulation through ubiquitin and ubiquitin-like histone modifications. Trends Biochem. Sci. 2021, 46, 258–269.
|
[21] |
Fulton, L.A.; Seitz, W.R.; Planalp, R.P. Aggregation of poly (N-isopropylacrylamide) homopolymer by Cu2+ and Zn2+: Significance for ratiometric metal ion indicators. Polyhedron. 2020, 191, 114797.
|
[22] |
Galster, M.; Löppenberg, M.; Galla, F.; Börgel, F.; Agoglitta, O.; Kirchmair, J.; Holl, R. Phenylethylene glycol-derived LpxC inhibitors with diverse Zn2+-binding groups. Tetrahedron. 2019, 75, 486–509.
|
[23] |
Agrawal, A.; de Oliveira, C.A.; Cheng, Y.; Jacobsen, J.A.; McCammon, J.A.; Cohen, S.M. Thioamide hydroxypyrothiones supersede amide hydroxypyrothiones in potency against anthrax lethal factor. J. Med. Chem. 2009, 52, 1063–1074.
|
[24] |
Cheshmedzhieva, D.; Toshev, N.; Gerova, M.; Petrov, O.; Dudev, T. Hydroxamic acid derivatives as histone deacetylase inhibitors: a DFT study of their tautomerism and metal affinities/selectivities. J. Mol. Model. 2018, 24, 114.
|
[25] |
Edem, P.E.; Czorny, S.; Valliant, J.F. Synthesis and evaluation of radioiodinated acyloxymethyl ketones as activity-based probes for cathepsin B. J. Med. Chem. 2014, 57, 9564–9577.
|
[26] |
Shieh, P.; Hangauer, M.J.; Bertozzi, C.R. Fluorogenic azidofluoresceins for biological imaging. J. Am. Chem. Soc. 2012, 134, 17428–17431.
|
[27] |
Korkmaz, I.N.; Özdemir, H. Synthesis and anticancer potential of new hydroxamic acid derivatives as chemotherapeutic agents. Appl. Biochem. Biotechnol. 2022, 194, 6349–6366.
|
[28] |
Zagni, C.; Citarella, A.; Oussama, M.; Rescifina, A.; Maugeri, A.; Navarra, M.; Scala, A.; Piperno, A.; Micale, N. Hydroxamic acid-based histone deacetylase (HDAC) inhibitors bearing a pyrazole scaffold and a cinnamoyl linker. Int. J. Mol. Sci. 2019, 20, E945.
|
[29] |
Khetmalis, Y.M.; Shree, B.; Kumar, B.V.S.; Schweipert, M.; Debarnot, C.; Ashna, F.; Sankaranarayanan, M.; Trinath, J.; Sharma, V.; Meyer-Almes, F.J.; Sekhar, K.V.G.C. Design, synthesis, and biological evaluation of tetrahydroisoquinoline based hydroxamate derivatives as HDAC 6 inhibitors for cancer therapy. J. Mol. Struct. 2023, 1278, 134952.
|
[30] |
Heimburg, T.; Chakrabarti, A.; Lancelot, J.; Marek, M.; Melesina, J.; Hauser, A.T.; Shaik, T.B.; Duclaud, S.; Robaa, D.; Erdmann, F.; Schmidt, M.; Romier, C.; Pierce, R.J.; Jung, M.; Sippl, W. Structure-based design and synthesis of novel inhibitors targeting HDAC8 from schistosoma mansoni for the treatment of schistosomiasis. J. Med. Chem. 2016, 59, 2423–2435.
|
[31] |
Fang, W.Y.; Ravindar, L.; Rakesh, K.P.; Manukumar, H.M.; Shantharam, C.S.; Alharbi, N.S.; Qin, H.L. Synthetic approaches and pharmaceutical applications of chloro-containing molecules for drug discovery: a critical review. Eur. J. Med. Chem. 2019, 173, 117–153.
|
[32] |
Riccardi, C.; Nicoletti, I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat. Protoc. 2006, 1, 1458–1461.
|
[33] |
Feng, T.T.; Wang, H.; Su, H.; Lu, H.; Yu, L.Q.; Zhang, X.J.; Sun, H.P.; You, Q.D. Novel N-hydroxyfurylacrylamide-based histone deacetylase (HDAC) inhibitors with branched CAP group (Part 2). Bioorg. Med. Chem. 2013, 21, 5339–5354.
|
[1] | Liwei Ma, Zhe Chen, Guoshan Shi, Yujing Wang, Song Chen, Shiyu Ni, Jing Li, Pengling Ge, Jicheng Liu. Assessment of acute toxicity and antitumor efficacy of Shizao decoction [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(4): 329-338. |
[2] | Shiqi Xu, Liyan Zhu, Chao Hao, Wenqian Liu, Chenglong Chen, Yongyi Chen, Aiqin Liu. Synthesis of a novel series of amino acid prodrugs based on tegafur and evaluation of their antitumor activity [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(9): 743-753. |
[3] | Beidou Zhou, Zihan Yu, Yugui Tong, Jiali Li, Baocheng Huang, Rongrong Wei, Zhimin Weng, Xin Wang, Zhipeng Ruan, Jian Lin, Caihong Xu, Jianbo Liu. Synthesis of prenylated and geranylated xanthones and their bioactivities [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(8): 564-576. |
[4] | Xiaoxia Liang, Lingxi Kong, Min He. A new homoisoflavone compound as a potent antibacterial agent from Aspidistra typica Baill. [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(9): 700-703. |
[5] | Gong Li, Qi Sun*, Jing-Rong Cui, Run-Tao Li*. Modification of the alkylating agent chlorambucil with spiropiperazinium salts [J]. , 2010, 19(5): 346-352. |
[6] | Xing Yan, Yu-Zhuo Ma, Jing-Bo Chen, Ying-Xiang Liu*. Synthesis and antitumor activities of 2-(E)-(4-cyclopentyloxy-3-methoxylbenzylidene)cyclopentanone derivatives [J]. , 2007, 16(4): 268-271. |
[7] | Xu Zhidong, Liu He, Wang Min, Xiao Sulong, Yang Ming*, Bu Xianhe . Cobalt (II) Complex of 6,7-Dicycanodipyridoquinoxaline with Antitumor Activities: Synthesis, Crystal Structure and Binding with DNA [J]. , 2002, 11(4): 125-131. |
[8] | Song Lin, Xie Yuli, Xie Yuyuan*. Synthesis and Antitumor Activity of Antineoplaston A10 Analogs [J]. , 2000, 9(2): 77-79. |
[9] | Kuan-Ke Lu, Fan-Ming Liu, Yao-Zu Chen*. Synthesis and Antitumor Activity of Podophyllotoxin Analogues [J]. , 1998, 7(4): 182-185. |
[10] | Ping Li, Yi-Xian Wang, Guo-jun Xu, Luo-Shan Xu. Antitumor Actinity of Puqietinone, a Novel Alkaloid from the Bulbs of Fritillaria puqiensis [J]. , 1995, 4(4): 217-220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||