Journal of Chinese Pharmaceutical Sciences ›› 2021, Vol. 30 ›› Issue (6): 524-537.DOI: 10.5246/jcps.2021.06.041
• Original articles • Previous Articles Next Articles
Zhe Li1,2, Yuan Ding1, Hao Huang3, Kexin Wang1, Jiayi Wu1, Lin Zhu2, Zhenggen Liao2, Liangshan Ming1,2,3,*()
Received:
2020-06-22
Revised:
2020-10-15
Accepted:
2021-12-01
Online:
2021-06-29
Published:
2021-06-29
Contact:
Liangshan Ming
Supporting:
Zhe Li, Yuan Ding, Hao Huang, Kexin Wang, Jiayi Wu, Lin Zhu, Zhenggen Liao, Liangshan Ming. Study of β-cyclodextrin differential encapsulation of essential oil components by using mixture design and NIR: Encapsulation of α-pinene, myrcene, and 3-carene as an example[J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(6): 524-537.
Table 2. Estimated regression coefficients for the polynomial model and the analysis of variance for the encapsulation efficacies of α-pinene, myrcene, and 3-carene from ICs.
[1] |
Rattanathada, T.; Plengsuriyakarn, T.; Asasujarit, R.; Cheoymang, A.; Karbwang, J.; Bangchang, K. Development of oral pharmaceutical formulation of standardized crude ethanolic extract of Atractylodes lancea (Thunb) DC. J. Chin. Pharm. Sci. 2020, 29, 280–293.
|
[2] |
Ming, L.S.; Huang, H.; Jiang, Y.M.; Cheng, G.; Zhang, D.Y.; Li, Z. Quickly identifying high-risk variables of ultrasonic extraction oil from multi-dimensional risk variable patterns and a comparative evaluation of different extraction methods on the quality of forsythia suspensa seed oil. Molecules. 2019, 24, 3445.
|
[3] |
Cui, H.Y.; Zhang, C.H.; Li, C.Z.; Lin, L. Antimicrobial mechanism of clove oil on Listeria monocytogenes. Food Control. 2018, 94, 140–146.
|
[4] |
Yin, Y. Effects and mechanisms of Artemisia argyi essential oil on monocrotaline-induced pulmonary hypertension in rats. J. Chin. Pharm. Sci. 2018, 27, 183–192.
|
[5] |
Rakmai, J.; Cheirsilp, B.; Mejuto, J.C.; Simal-Gándara, J.; Torrado-Agrasar, A. Antioxidant and antimicrobial properties of encapsulated guava leaf oil in hydroxypropyl-beta-cyclodextrin. Ind. Crop. Prod. 2018, 111, 219–225.
|
[6] |
Yuan, W.Q.; Teo, C.H.M.; Yuk, H.G. Combined antibacterial activities of essential oil compounds against Escherichia coli O157: H7 and their application potential on fresh-cut lettuce. Food Control. 2019, 96, 112–118.
|
[7] |
Karimirad, R.; Behnamian, M.; Dezhsetan, S. Bitter orange oil incorporated into chitosan nanoparticles: Preparation, characterization and their potential application on antioxidant and antimicrobial characteristics of white button mushroom. Food Hydrocoll. 2020, 100, 105387.
|
[8] |
Ma, W.N.; Gu, F.G. Complexation of poorly aqueous soluble drug risperidone with hydroxypropyl-β-cyclodextrin enhances its dissolution. J. Chin. Pharm. Sci. 2015, 24, 47–53.
|
[9] |
Garcia-Sotelo, D.; Silva-Espinoza, B.; Perez-Tello, M.; Olivas, I.; Alvarez-Parrilla, E.; González-Aguilar, G.A.; Ayala-Zavala, J.F. Antimicrobial activity and thermal stability of rosemary essential oil: β–cyclodextrin capsules applied in tomato juice. LWT. 2019, 111, 837–845.
|
[10] |
Shan, X.Y.; Jiang, K.Y.; Li, J.C.; Song, Y.; Han, J.; Hu, Y. Preparation of β-cyclodextrin inclusion complex and its application as an intumescent flame retardant for epoxy. Polymers. 2019, 11, 71..
|
[11] |
Xiao, Z.B.; Liu, Y.F.; Niu, Y.W.; Kou, X.R. Cyclodextrin supermolecules as excellent stabilizers for Pickering nanoemulsions. Colloids Surf. A Physicochem. Eng. Aspects. 2020, 588, 124367.
|
[12] |
Wang, J.; Cao, Y.P.; Sun, B.G.; Wang, C.T. Physicochemical and release characterisation of garlic oil-β-cyclodextrin inclusion complexes. Food Chem. 2011, 127, 1680–1685.
|
[13] |
Rakmai, J.; Cheirsilp, B.; Mejuto, J.C.; Torrado-Agrasar, A.; Simal-Gándara, J. Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Food Hydrocoll. 2017, 65, 157–164.
|
[14] |
Szente, L.; Szejtli, J. Cyclodextrins as food ingredients. Trends Food Sci. Technol. 2004, 15, 137–142.
|
[15] |
Qiu, N.; Zhao, X.; Liu, Q.M.; Shen, B.; Liu, J.D.; Li, X.B.; An, L.Y. Inclusion complex of emodin with hydroxypropyl-β-cyclodextrin: Preparation, physicochemical and biological properties. J. Mol. Liq. 2019, 289, 111151.
|
[16] |
Abarca, R.L.; Rodríguez, F.J.; Guarda, A.; Galotto, M.J.; Bruna, J.E. Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chem. 2016, 196, 968–975.
|
[17] |
Hill, L.E.; Gomes, C.; Taylor, T.M. Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT - Food Sci. Technol. 2013, 51, 86–93.
|
[18] |
Hadidi, M.; Pouramin, S.; Adinepour, F.; Haghani, S.; Jafari, S.M. Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities. Carbohydr. Polym. 2020, 236, 116075.
|
[19] |
Wilde, A.S.; Haughey, S.A.; Galvin-King, P.; Elliott, C.T. The feasibility of applying NIR and FT-IR fingerprinting to detect adulteration in black pepper. Food Control. 2019, 100, 1–7.
|
[20] |
Yağmur, N.; Şahin, S. Encapsulation of ellagic acid from pomegranate peels in microalgae optimized by response surface methodology and an investigation of its controlled released under simulated gastrointestinal studies. J. Food Sci. 2020, 85, 998–1006.
|
[21] |
Baj, T.; Baryluk, A.; Sieniawska, E. Application of mixture design for optimum antioxidant activity of mixtures of essential oils from Ocimum basilicum L., Origanum Majorana L. and Rosmarinus officinalis L. Ind. Crop. Prod. 2018, 115, 52–61.
|
[22] |
Ortega-Zúñiga, C.; La Rosa, C.P.D.; Román-Ospino, A.D.; Serrano-Vargas, A.; Romañach, R.J.; Méndez, R. Development of near infrared spectroscopic calibration models for in-line determination of low drug concentration, bulk density, and relative specific void volume within a feed frame. J. Pharm. Biomed. Anal. 2019, 164, 211–222.
|
[23] |
Ming, L.S.; Li, Z.; Wu, F.; Du, R.F.; Feng, Y. A two-step approach for fluidized bed granulation in pharmaceutical processing: Assessing different models for design and control. PLoS One. 2017, 12, e0180209.
|
[24] |
Wan, H.D.; Ni, Y.; Li, D. Preparation, characterization and evaluation of an inclusion complex of steviolbioside with γ-cyclodextrin. Food Biosci. 2018, 26, 65–72.
|
[25] |
Cui, H.Y.; Siva, S.; Lin, L. Ultrasound processed cuminaldehyde/2-hydroxypropyl-β-cyclodextrin inclusion complex: Preparation, characterization and antibacterial activity. Ultrason. Sonochem. 2019, 56, 84–93.
|
[26] |
Wadhwa, G.; Kumar, S.; Chhabra, L.; Mahant, S.; Rao, R. Essential oil–cyclodextrin complexes: an updated review. J. Inclusion Phenom. Macrocycl. Chem. 2017, 89, 39–58.
|
[27] |
Marques, C.S.; Carvalho, S.G.; Bertoli, L.D.; Villanova, J.C.O.; Pinheiro, P.F.; dos Santos, D.C.M.; Yoshida, M.I.; de Freitas, J.C.C.; Cipriano, D.F.; Bernardes, P.C. Β-Cyclodextrin inclusion complexes with essential oils: Obtention, characterization, antimicrobial activity and potential application for food preservative sachets. Food Res. Int. 2019, 119, 499–509.
|
[28] |
Costa, P.; Medronho, B.; Gonçalves, S.; Romano, A. Cyclodextrins enhance the antioxidant activity of essential oils from three Lamiaceae species. Ind. Crop. Prod. 2015, 70, 341–346.
|
[29] |
Badaró, A.T.; Morimitsu, F.L.; Ferreira, A.R.; Clerici, M.T.P.S.; Fernandes Barbin, D. Identification of fiber added to semolina by near infrared (NIR) spectral techniques. Food Chem. 2019, 289, 195–203.
|
[30] |
Sampaio, P.S.; Soares, A.; Castanho, A.; Almeida, A.S.; Oliveira, J.; Brites, C. Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics algorithms. Food Chem. 2018, 242, 196–204.
|
[31] |
Sirisomboon, P.; Posom, J. On-line measurement of activation energy of ground bamboo using near infrared spectroscopy. Renew. Energy. 2019, 133, 480–488.
|
[32] |
Ferreiro-González, M.; Espada-Bellido, E.; Guillén-Cueto, L.; Palma, M.; Barroso, C.G.; Barbero, G.F. Rapid quantification of honey adulteration by visible-near infrared spectroscopy combined with chemometrics. Talanta. 2018, 188, 288–292.
|
[33] |
Shawky, E.; Abu El-Khair, R.M.; Selim, D.A. NIR spectroscopy-multivariate analysis for rapid authentication, detection and quantification of common plant adulterants in saffron (Crocus sativus L.) stigmas. LWT. 2020, 122, 109032.
|
[34] |
Costa, M.C.A.; Morgano, M.A.; Ferreira, M.M.C.; Milani, R.F. Quantification of mineral composition of Brazilian bee pollen by near infrared spectroscopy and PLS regression. Food Chem. 2019, 273, 85–90.
|
[35] |
Pu, H.Y.; Sun, Q.M.; Tang, P.X.; Zhao, L.D.; Li, Q.; Liu, Y.Y.; Li, H. Characterization and antioxidant activity of the complexes of tertiary butylhydroquinone with β-cyclodextrin and its derivatives. Food Chem. 2018, 260, 183–192.
|
[36] |
Gursul, S.; Karabulut, I.; Durmaz, G. Antioxidant efficacy of thymol and carvacrol in microencapsulated walnut oil triacylglycerols. Food Chem. 2019, 278, 805–810.
|
[37] |
Yuan, C.; Wang, Y.L.; Liu, Y.W.; Cui, B. Physicochemical characterization and antibacterial activity assessment of lavender essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Ind. Crop. Prod. 2019, 130, 104–110.
|
[38] |
Zhang, J.Q.; Wu, D.; Jiang, K.M.; Zhang, D.; Zheng, X.; Wan, C.P.; Zhu, H.Y.; Xie, X.G.; Jin, Y.; Lin, J. Preparation, spectroscopy and molecular modelling studies of the inclusion complex of cordycepin with cyclodextrins. Carbohyd. Res. 2015, 406, 55–64.
|
[1] | Ping Shang, Lin Liu, Yi Fang. Investigating the mechanism of action of Gui Zhi Fu Ling Wan in the treatment of endometriosis based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 704-719. |
[2] | Dongyan Wu, Xiaodan Wang, Jinmiao Chai, Qinqing Li, Yue Li, Mei Bi, Wanwei Gui, Huimin Cao. Study on the mechanism of Danggui Buxue decoction in the treatment of diabetic retinopathy based on network pharmacology and experiment [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 527-538. |
[3] | Yancong Zhao, Li Wang, Jingjing Zeng, Jinghua Li. The structure and antiproliferative activity of the inclusion complex of neoandrographolide/β-cyclodextrin [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(6): 427-434. |
[4] | Min Ao, Minglan Bao, Yaxing Hou, Ying Yue, Huifang Li, Guohua Wu, Su Ri Ga La Tu. Study on the mechanism of Mongolian medicine Herba Lomatognii against acute liver injury based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 268-282. |
[5] | Yajing Li, Yawen Bai, Yu Du, Changhong Yan, Chunjie Ma, Lining Sun, Fengyue Bu, Haoyang Yan. Yu Ping Feng Powder for chronic glomerulonephritis treatment: A meta-analysis and network pharmacology study [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(12): 1006-1026. |
[6] | Zhiyong Sun, Shuli Gao, Yang Zhang, Gangqiang Xue, Zilin Yuan, Shaonan Wang. Study on the potential mechanism of Pu Gong Ying in treating breast hyperplasia based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 893-910. |
[7] | Daiying Zhou, Jing Chen, Zhigang Lv. Network pharmacology prediction and molecular docking-based study on the mechanism of Erigeron breviscapus in the treatment of age-related macular degeneratio [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 923-934. |
[8] | Ning Ding, Tao Zhang, Ji Luo, Haochen Liu, Yu Deng, Yongheng He. Study on the mechanism of Baishao Qiwu Decoction in the treatment of colorectal cancer based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(1): 17-31. |
[9] | Ipargul Hafiz, Zhaozhi Wang, Hongji He, Zhezhe Li, Mei Wang. Exploring the mechanism of Peganum harmala L. seeds on hepatocellular carcinoma based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(7): 517-529. |
[10] | Yan Shang, Xiaoyuan Lin, Tiantian Zhang, Lihua Xie, Guoheng Hu. Investigation on the mechanism of YQHX against cerebral ischemic injury based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(2): 117-133. |
[11] | Xiaohui Du, Hongyan Yang, Tao Wang, Hongxia Cui, Yu Lin, Hongling Li. Deciphering the latent mechanism of nobiletin in the treatment of metabolic syndrome based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(11): 803-823. |
[12] | Taixiang Gao, Feng Zhao, Liyao Shi, Rui Wang. Exploring the mechanism of Fu-Zi Decoction in treatment of chronic heart failure based on network pharmacology and molecular docking technology [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(9): 705-715. |
[13] | Aris Stiawan, Eti Nurwening Sholikhah, Yehezkiel Steven Kurniawan, Yoga Priastomo, Jumina. Synthesis, cytotoxicity assay, and molecular docking study of hydroxychalcone derivatives as potential tyrosinase inhibitors [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(8): 634-644. |
[14] | Cheng Li, Yuhua Zhu, Xiaomin Sun, Jing Xu, Dan Xiong, Juan Wang, Xinlu Gao, Xulong Chen. The multiple mechanisms of tripterygium wilfordii-induced acute kidney injury based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(7): 556-569. |
[15] | Yiben Lu, Miao Zhang, Yongjun Zheng, Xinyu Hou, Muye He, Kaiyan Lou, Feng Gao. Redox-responsive self-assembly polymeric micelles based on mPEG-β-cyclodextrin and a camptothecin prodrug as drug release carriers [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(12): 941-955. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||