[1] Du, X.; Graedel, T.E. Uncovering the Global Life Cycles of the Rare Earth Elements. Sci. Rep. 2011, 1, 145.
[2] Gwenzi, W.; Mangori, L.; Danha, C.; Chaukura, N.; Dunjana, N.; Sanganyado, E. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci. Total. Environ. 2018, 636, 299–313.
[3] Cheng, J.; Fei, M.; Fei, M.; Sang, X.; Sang, X.; Cheng, Z.; Gui, S.; Zhao, X.; Sheng, L.; Sun, Q.; Hu, R.; Wang, L.; Hong, F. Gene expression profile in chronic mouse liver injury caused by long-term exposure to CeCl3. Environ. Toxicol. 2014, 29, 837–846.
[4] Huang, P.; Li, J.; Zhang, S.; Chen, C.; Han, Y.; Liu, N.; Xiao, Y.; Wang, H.; Zhang, M.; Yu, Q.; Liu, Y.; Wang, W. Effects of lanthanum, cerium, and neodymium on the nuclei and mitochondria of hepatocytes: accumulation and oxidative damage. Environ. Toxicol. Pharmacol. 2011, 31, 25–32.
[5] Kawagoe, M.; Hirasawa, F.; Cun Wang, S.; Liu, Y.; Ueno, Y.; Sugiyama, T. Orally administrated rare earth element cerium induces metallothionein synthesis and increases glutathione in the mouse liver. Life. Sci. 2005, 77, 922–937.
[6] Pagano, G.; Aliberti, F.; Guida, M.; Oral, R.; Siciliano, A.; Trifuoggi, M.; Tommasi, F. Rare earth elements in human and animal health: State of art and research priorities. Environ. Res. 2015, 142, 215–220.
[7] Li, N.; Cheng, J.; Cheng, Z.; Hu, R.; Cai, J.; Gao, G.; Cui, Y.; Wang, L.; Hong, F. Molecular mechanism of inflammatory response in mouse liver caused by exposure to CeCl3. Environ. Toxicol. 2013, 28, 349–358.
[8] Lacour, B.; Lucas, A.; Auchère, D.; Ruellan, N.; Patey, N.M.D.S.; Drüeke, T.B. Chronic renal failure is associated with increased tissue deposition of lanthanum after 28-day oral administration. Kidney Int. 2005, 67, 1062–1069.
[9] Pennick, M.; Dennis, K.; Damment, S.J. Absolute bioavailability and disposition of lanthanum in healthy human subjects administered lanthanum carbonate. J. Clin. Pharmacol. 2006, 46, 738–746.
[10] Feng, M.; Fan, Y.Z.; Ma, X.J.; Li, J.X.; Yang, X.G. The gadolinium-based contrast agent Omniscan® promotes in vitro fibroblast survival through in situ precipitation. Metallomics. 2015, 7, 1103–1120.
[11] Idée, J.M.; Port, M.; Raynal, I.; Schaefer, M.; Greneur, S.L.; Corot, C. Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review. Fundam. Clin. Pharmacol. 2006, 20, 563–576.
[12] Abraham, J.L.; Thakral, C.; Skov, L.; Rossen, K.; Marckmann, P. Dermal inorganic gadolinium concentrations: evidence for in vivo transmetallation and long-term persistence in nephrogenic systemic fibrosis. Br. J. Dermatol. 2008, 158, 273–280.
[13] Florence, A.T. The oral absorption of micro- and nanoparticulates: neither exceptional nor unusual. Pharm. Res. 1997, 14, 259–266.
[14] Etienne-Mesmin, L.; Chassaing, B.; Sauvanet, P.; Denizot, J.; Blanquet-Diot, S.; Darfeuille-Michaud, A.; Pradel, N.; Livrelli, V. Interactions with M cells and macrophages as key steps in the pathogenesis of enterohemorrhagic Escherichia coli infections. PLoS. One. 2011, 6, e23594.
[15] Owen, R.L.; Pierce, N.F.; Apple, R.T.; Cray, W.C. Jr. M cell transport of Vibrio cholerae from the intestinal lumen into Peyer's patches: a mechanism for antigen sampling and for microbial transepithelial migration. J. Infect. Dis. 1986, 153, 1108–1118.
[16] Ermak, T.H.; Dougherty, E.P.; Bhagat, H.R.; Kabok, Z.; Pappo, J. Uptake and transport of copolymer biodegradable microspheres by rabbit Peyer’s patch M cells. Cell. Tissue. Res. 1995, 279, 433–436.
[17] Des Rieux, A.; Fievez, V.; Theate, I.; Mast, J.; Preat, V.; Schneider, Y.J. An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells. Eur. J. Pharm. Sci. 2007, 30, 380–391.
[18] Pappo, J.; Ermak, T.H. Uptake and translocation of fluorescent latex particles by rabbit Peyer’s patch follicle epithelium: a quantitative model for M cell uptake. Clin. Exp. Immunol. 1989, 76, 144–148.
[19] Des Rieux, A.; Ragnarsson, E.G.; Gullberg, E.; Preat, V.; Schneider, Y.J.; Artursson, P. Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. Eur. J. Pharm. Sci. 2005, 25, 455–465.
[20] Brun, E.; Barreau, F.; Veronesi, G.; Fayard, B.; Sorieul, S.; Chaneac, C.; Carapito, C.; Rabilloud, T.; Mabondzo, A.; Herlin-Boime, N.; Carriere, M. Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia. Part. Fibre. Toxicol. 2014, 11, 13.
[21] Liu, T.Y.; Chen, S.Y.; Liu, D.M.; Liou, S.C. On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery. J. Control. Release. 2005, 107, 112–121.
[22] Shakweh, M.; Ponchel, G.; Fattal, E. Particle uptake by Peyer’s patches: a pathway for drug and vaccine delivery. Expert. Opin. Drug Deliv. 2004, 1, 141–163.
[23] Jepson, M.A.; Simmons, N.L.; Savidge, T.C.; James, P.S.; Hirst, B.H. Selective binding and transcytosis of latex microspheres by rabbit intestinal M cells. Cell Tissue. Res. 1993, 271, 399–405.
[24] Lefevre, M.E.; Hancock, D.C.; Joel, D.D. Intestinal barrier to large particulates in mice. J. Toxicol. Environ. Health. 1980, 6, 691–704.
[25] Jepson, M.; Simmons, N.; O''Hagan, D.; Hirst, B. Comparison of Poly(DL-Lactide-co-Glycolide) and Polystyrene Microsphere Targeting to Intestinal M Cells. J. Drug Target. 1993, 1, 245–249.
[26] Jani, P.; Halbert, G.W.; Langridge, J.; Florence, A.T. The uptake and translocation of latex nanospheres and microspheres after oral administration to rats. J. Pharm. Pharmacol. 1989, 41, 809–812.
[27] Smith, M.W.; Peacock, M.A. “M” cell distribution in follicle-associated epithelium of mouse Peyer’s patch. Am. J. Anat. 1980, 159, 167–175.
[28] Pappo, J.; Steger, H.J.; Owen, R.L. Differential adherence of epithelium overlying gut-associated lymphoid tissue. An ultrastructural study. Lab. Invest. 1988, 58, 692–697.
[29] Gamboa, J.M.; Leong, K.W. In vitro and in vivo models for the study of oral delivery of nanoparticles. Adv. Drug Deliv. Rev. 2013, 65, 800–810.
[30] Yang, X.G.; Fan, Y.Z.; Feng, M.; Liu, H.X.; Wang, K. Chemical species and mechanisms underlying biological effects of rare earth elements. Sci. Sin. 2014, 44, 521–530.
[31] Waring, P.M.; Watling, R.J. Rare earth deposits in a deceased movie projectionist. A new case of rare earth pneumoconiosis? Med. J. Aust. 1990, 153, 726–730.
[32] High, W.A.; Ayers, R.A.; Cowper, S.E. Gadolinium is quantifiable within the tissue of patients with nephrogenic systemic fibrosis. J. Am. Acad. Dermatol. 2007, 56, 710–712.
[33] Jepson, M.A.; Simmons, N.L.; Savidge, T.C.; James, P.S.; Hirst, B.H. Selective binding and transcytosis of latex microspheres by rabbit intestinal M cells. Cell. Tissue. Res. 1993, 271, 399–405.
[34] Kalgaonkar, S.; Lonnerdal, B. Receptor-mediated uptake of ferritin-bound iron by human intestinal Caco-2 cells. J. Nutr. Biochem. 2009, 20, 304–311.
[35] Jani, P.; Halbert, G.W.; Langridge, J.; Florence, A.T. Nanoparticle Uptake by the Rat Gastrointestinal Mucosa: Quantitation and Particle Size Dependency. J. Pharm. Pharmacol. 1990, 42, 821–826.
[36] Des, R.A.; Ragnarsson, E.G.; Gullberg, E.; Préat, V.; Schneider, Y. J.; Artursson, P. Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. Eur. J. Pharm. Sci. 2005, 25, 455–465.
[37] Corr, S.C.; Gahan, C.C.G.M.; Hill, C., Corr, S.C., Gahan, C.C.; Hill, C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS. Immunol. Med. Microbiol. 2008, 52, 2–12.
[38] Wells, C.L.; Maddaus, M.A.; Erlandsen, S.L.; Simmons, R.L. Evidence for the phagocytic transport of intestinal particles in dogs and rats. Infect. Immun. 1988, 56, 278–282.
[39] Lomotan, E.A.; Brown, K.A.; Speaker, T.J. Offita, P.A., Aqueous-based microcapsules are detected primarily in gut-associated dendritic cells after oral inoculation of mice. Vaccine. 1997, 15, 1959–1962.
[40] Eberl, G.; Lochner, M. The development of intestinal lymphoid tissues at the interface of self and microbiota. Mucosal. Immunol. 2009, 2, 478–485.
[41] Kimura, S. Molecular insights into the mechanisms of M-cell differentiation and transcytosis in the mucosa-associated lymphoid tissues. Anat. Sci. Int. 2018, 93, 23–34.
[42] Khan, I.U.; Huang, J.; Liu, R.; Wang, J.; Xie, J.; Zhu, N. Phage Display-Derived Ligand for Mucosal Transcytotic Receptor GP-2 Promotes Antigen Delivery to M Cells and Induces Antigen-Specific Immune Response. SLAS. Discov. 2017, 22, 879–886. |