[1] Geoghegan, J.A.; Irvine, A.D.; Foster, T.J. Staphylococcus aureus and Atopic Dermatitis: A Complex and Evolving Relationship. Trends Microbiol. 2018, 26, 484-497.
[2] Zhang, X.; Hu, X.; Rao, X. Apoptosis induced by Staphylococcus aureus toxins. Microbiol. Res. 2017, 205, 19-24.
[3] Seilie, E.S.; Wardenburg, J.B. Staphylococcus aureus pore-forming toxins: The interface of pathogen and host complexity. Semin. Cell Dev. Biol. 2017, 72, 101-116.
[4] David, M.Z.; Dryden, M.; Gottlieb, T.; Tattevin, P.; Gould, I.M. Recently approved antibacterials for MRSA and other gram-positive pathogens: the shock of the new. Int. J. Antimicrob. Agents. 2017, 50, 303-307.
[5] Parisi, O.I.; Scrivano, L.; Sinicropi, M.S.; Puoci, F. Polymeric nanoparticle constructs as devices for antibacterial therapy. Curr. Opin. Pharmacol. 2017, 36, 72-77.
[6] Erik, T.; Webster, T.J. Reducing infections through nanotechnology and nanoparticles. Int. J. Nanomedicine. 2011, 6, 1463-1473.
[7] Jain, A.; Shah, S.G.; Chugh, A. Cell Penetrating Peptides as Efficient Nanocarriers for Delivery of Antifungal Compound, Natamycin for the Treatment of Fungal Keratitis. Pharm. Res. 2015, 32, 1920-1930.
[8] Holm, T.; Netzereab, S.; Hansen, M.; Langel, U.; Hällbrink, M. Uptake of cell-penetrating peptides in yeasts. FEBS Lett. 2005, 579, 5217-5222.
[9] Zhu, Y.; Zhang, J.; Meng, F.; Deng, C.; Cheng, R.; Feijen, J.; Zhong, Z. cRGD/TAT dual-ligand reversibly crosslinked micelles loaded with docetaxel penetrate deeply into tumor tissue and show high antitumor efficacy in vivo. ACS Appl. Mater. Interfaces. 2017, 9, 35651-35663.
[10] He, B.; Ma, S.; Peng, G.; He, D. TAT-modified Self-assembled Cationic Peptide Nanoparticles as an Efficient Antibacterial Agent. Nanomedicine. 2018, 14, 365-372.
[11] Ghaffar, K.A.; Hussein, W.M.; Khalil, Z.G.; Capon, R.J.; Skwarczynski, M.; Toth, I. Levofloxacin and indolicidin for combination antimicrobial therapy. Curr. Drug Deliv. 2015, 12, 108-114.
[12] Goldstein, I.J.; Hayes, C.E. The Lectins: Carbohydrate-Binding Proteins of Plants and Animals. Adv. Carbohydr. Chem. Biochem. 1978, 35, 127-340.
[13] Foster, T.J. Immune evasion by staphylococci. Nat. Rev. Microbiol. 2005, 3, 948-958.
[14] Torchilin, V.P. Fluorescence microscopy to follow the targeting of liposomes and micelles to cells and their intracellular fate. Adv. Drug Deliv. Rev. 2005, 57, 95-109.
[15] Xie, H.Y.; Xie, M.; Zhang, Z.L.; Long, Y.M.; Liu, X.; Tang, M.L.; Pang, D.W.; Tan, Z.; Dickinson, C.; Zhou, W. Wheat germ agglutinin-modified trifunctional nanospheres for cell recognition. Bioconjug. Chem. 2007, 18, 1749-1755.
[16] Lavelle, E.C.; Grant, G.; Pusztai, A.; Pfüller, U.; O’Hagan, D.T. Mucosal immunogenicity of plant lectins in mice. Immunology. 2000, 99, 30-37.
[17] Gabius, H. Endogenous Lectins in Tumors and the Immune System. Cancer Invest. 1987, 5, 39-46.
[18] Mody, R.; Joshi, S.H.A.; Chaney, W. Use of lectins as diagnostic and therapeutic tools for cancer. J. Pharmacol. Toxicol. Methods. 1995, 33, 1-10.
[19] Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-Ninth Edition. Program Index of CLSI Standards and Guidelines. 2012, 32, 15-50.
[20] Principe, L.; D’Arezzo, S.; Capone, A.; Petrosillo, N.; Visca, P. In vitro activity of tigecycline in combination with various antimicrobials against multidrug resistant Acinetobacter baumannii. Ann Clin. Microbiol. Antimicrob. 2009, 8, 18.
[21] Chakraborty, S.P.; Sahu, S.K.; Pramanik, P.; Roy, S. In vitro antimicrobial activity of nanoconjugated vancomycin against drug resistant Staphylococcus aureus. Int. J. Pharm. 2012, 436, 659-676.
[22] Barbieri, D.S.; Tonial, F.; Lopez, P.V.; Sales Maia, B.H.; Santos, G.D.; Ribas, M.O.; Glienke, C.; Vicente, V.A. Antiadherent activity of Schinus terebinthifolius and Croton urucurana extracts on in vitro biofilm formation of Candida albicans and Streptococcus mutans. Arch. Oral. Biol. 2014, 59, 887-896.
[23] Burt, S.A.; Ojofakunle, V.T.; Woertman, J.; Veldhuizen, E.J. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. Plos. One. 2014, 9, e93414.
[24] De Oliveira, F.F.; Torres, A.F.; Goncalves, T.B.; Santiago, G.M.; De Carvalho, C.B.; Aguiar, M.B.; Camara, L.M.; Rabenhorst, S.H.; Martins, A.M.; Valenca Junior, J.T.; Nagao-Dias, A.T. Efficacy of Plectranthus amboinicus (Lour.) Spreng in a Murine Model of Methicillin-Resistant Staphylococcus aureus Skin Abscesses. Evid. Based Complement Alternat. Med. 2013, 2013, 291592. |