[1] Hussain, Z.; Yousif, E.; Ahmed, A.; Altaie, A. Synthesis and characterization of Schiff's bases of sulfamethoxazole. Org. Med. Chem. Lett. 2014, 4, 1-4.
[2] da Silva, C.M.; da Silva, D.L.; Modolo, L.V.; Alves, R.B.; de Resende, M.A.; Martins, C.V.B.; de Fátima, Â. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res. 2011, 2, 1-8.
[3] Zhao, H.; Huang, B.; Wu, Y.; Cai, M. MCM-41-immobilized Schiff base-pyridine bidentate copper (I) complex as a highly efficient and recyclable catalyst for the Sonogashira reaction. J. Organometal. Chem. 2015, 797, 21-28.
[4] Alphonse, R.; Varghese, A.; George, L. Synthesis, characterization and photophysical studies of a novel schiff base bearing 1, 2, 4-Triazole scaffold. J. Mol. Struct. 2016, 1113, 60-69.
[5] Nag, S.; Mishra, A.; Batra, S. A facile route to the synthesis of pyrimido[2,1-b]quinazoline core from the primary allyl amines afforded from Baylis-Hillman adducts. Tetrahedron 2008, 64, 10162-10171.
[6] Neochoritis, C.G.; Zarganes-Tzitzikas, T.; Tsoleridis, C.A.; Stephanidou-Stephanatou, J.; Kontogiorgis, C.A.; Hadjipavlou-Litina, D.J.; Choli-Papadopoulou, T. One-pot microwave assisted synthesis under green chemistry conditions, antioxidant screening, and cytotoxicity assessments of benzimidazole Schiff bases and pyrimido[1,2-a]benzimidazol-3(4H)-ones. Eur. J. Med. Chem. 2011, 46, 297-306.
[7] Tomma, J.H.; Khazaal, M.S.; Al-Dujaili, A.H. Synthesis and characterization of novel Schiff bases containing pyrimidine unit. Arab. J. Chem. 2014, 7, 157-163.
[8] Mulunda, M.; Ndou, R.V.; Dzoma, B.; Nyirenda, M.; Bakunzi, F. Canine aflatoxicosis outbreak in South Africa (2011): a possible multi-mycotoxins aetiology. J. S. Afr. Vet. Assoc. 2013, E1, 84, 5.
[9] Olalekan, T.E.; Adejoro, I.A.; vanbrecht, B.; Watkins, G.M. Crystal structures, spectroscopic and theoretical study of novel Schiff bases of 2-(methylthiomethyl)anilines. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2015, 139, 385-395.
[10] Banerjee, S.; Horn, A.; Khatri, H.; Sereda, G. A green one-pot multicomponent synthesis of 4H-pyrans and polysubstituted aniline derivatives of biological, pharmacological, and optical applications using silica nanoparticles as reusable catalyst. Tetrahedron Lett. 2011, 52, 1878-1881.
[11] Calabrò, M.L.; Caputo, R.; Ettari, R.; Puia, G.; Ravazzini, F.; Zappalà, M.; Micale, N. Synthesis and biological evaluation of new 2-amino-6-(trifluoromethoxy)benzoxazole derivatives, analogues of riluzole. Med. Chem. Res. 2013, 22, 6089-6095.
[12] Lekha, L.; Kanmani Raja, K.; Rajagopal, G.; Easwaramoorthy, D. Schiff base complexes of rare earth metal ions: Synthesis, characterization and catalytic activity for the oxidation of aniline and substituted anilines. J. Organometal. Chem. 2014, 753, 72-80.
[13] Tao, N.; Liu, G.; Bai, L.; Tang, L.; Guo, C. Genotoxicity and growth inhibition effects of aniline on wheat. Chemosphere. 2017, 169, 467-473.
[14] Yıldız, M.; Karpuz, O.; Zeyrek, C.T.; Boyacıoglu, B.; Dal, H.; Demir, N.; Yıldırım, N.; Ünver, H. Synthesis, biological activity, DNA binding and anion sensors, molecular structure and quantum chemical studies of a novel bidentate Schiff base derived from 3,5-bis(triflouromethyl)aniline and salicylaldehyde. J. Mol. Struct. 2015, 1094, 148-160.
[15] Yılmaz, I.; Kazak, C.; Gümüş, S.; Ağar, E.; Ardalı, Y. (E)-3-Chloro-N-((5-nitrothiophen-2-yl)methylene)aniline: A combined crystallographic, theoretical and antimicrobial activity investigation. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2012, 97, 423-428.
[16] Alias, M.; Kassum, H.; Shakir, C. Synthesis, physical characterization and biological evaluation of Schiff base M (II) complexes. J. Assoc. Arab Univ. Basic Appl. Sci. 2014, 15, 28-34.
[17] Shoair, A.F.; El-Shobaky, A.R.; Abo-Yassin, H.R. Synthesis, spectroscopic characterization, catalytic and antibacterial studies of ruthenium (III) Schiff base complexes. J. Mol. Liq. 2015, 211, 217-227.
[18] Zhou, M.D.; Zang, S.L.; Herdtweck, E.; Kuhn, F.E. A (salicylidene)aniline derived Schiff-base adduct of methyltrioxorhenium (VII)-Cis-and trans-coordination of the ligand. J. Organometal. Chem. 2008, 693, 2473-2477.
[19] Thangavel, S.; Rajamanikandan, R.; Friedrich, H.B.; Ilanchelian, M.; Omondi, B. Binding interaction, conformational change, and molecular docking study of N-(pyridin-2-ylmethylene)aniline derivatives and carbazole Ru (II) complexes with human serum albumins. Polyhedron. 2016, 107, 124-135.
[20] Yousif, E.; Majeed, A.; Al-Sammarrae, K.; Salih, N.; Salimon, J.; Abdullah, B. Metal complexes of Schiff base: Preparation, characterization and antibacterial activity. Arab. J. Chem. 2017, 10, S1639-S1644.
[21] Bruker, Bruker AXS, Inc., Madison, WI, USA. 2015.
[22] Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 2015, 48, 3-10.
[23] Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3-8.
[24] Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339-341.
[25] Jogee, P.S.; Ingle, A.P.; Rai, M. Isolation and identification of toxigenic fungi from infected peanuts and efficacy of silver nanoparticles against them. Food Control. 2017, 71, 143-151.
[26] Venegas, B.; González-Damián, J.; Celis, H.; Ortega-Blake, I. Amphotericin B Channels in the Bacterial Membrane: Role of Sterol and Temperature. Biophys. J. 2003, 85, 2323-2332.
[27] CLSI, Clinical and Laboratory Standards Institute. 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087 USA. 2008.
[28] Grobler, J.A.; Stillmock, K.; Hu, B.; Witmer, M.; Felock, P.; Espeseth, A.S.; Wolfe, A.; Egbertson, M.; Bourgeois, M.; Melamed, J.; Wai, J.S.; Young, S.; Vacca, J.; Hazuda, D.J. Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. Proc. Natl. Acad. Sci. 2002, 99, 6661-6666.
[29] Lam, T.L.; Lam, M.L.; Au, T.K.; Ip, D.T.M.; Ng, T.B.; Fong, W.P.; Wan, D.C.C. A comparison of human immunodeficiency virus type-1 protease inhibition activities by the aqueous and methanol extracts of Chinese medicinal herbs. Life Sci. 2000, 67, 2889-2896.
[30] Naresh Kumar, K.; Ramesh, R. Synthesis, luminescent, redox and catalytic properties of Ru (II) carbonyl complexes containing 2N2O donors. Polyhedron. 2005, 24, 1885-1892.
[31] Rauf, A.; Shah, A.; Khan, A.A.; Shah, A.H.; Abbasi, R.; Qureshi, I.Z.; Ali, S. Synthesis, ph dependent photometric and electrochemical investigation, redox mechanism and biological applications of novel Schiff base and its metallic derivatives. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2017, 176, 155-167.
[32] Bruno, I.J.; Cole, J.C.; Kessler, M.; Luo, J.; Motherwell, W.D.S.; Purkis, L.H.; Smith, B.R.; Taylor, R.; Cooper, R.I.; Harris, S.E.; Orpen, A.G. Retrieval of Crystallographically-Derived Molecular Geometry Information. J. Chem. Inf. Comput. Sci. 2004, 44, 2133-2144.
[33] Tang, Y.Z.; Liu, Z.Q. Quantitative structure-activity relationship of hydroxyl-substituent Schiff bases in radical-induced hemolysis of human erythrocytes. Cell Biochem. Funct. 2008, 26, 185-191.
[34] Royet, J.; Dziarski, R. Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defenses. Nat. Rev. Microbiol. 2007, 5, 264-277.
[35] Qin, W.; Sha, L.; Panunzio, M.; Biondi, S. Schiff Bases: A Short Survey on an Evergreen Chemistry Tool. Molecules. 2013, 18, 12264-12289.
[36] Hazuda, D.J. Resistance to inhibitors of the human immunodeficiency virus type 1 integration. Bras. J. Infect. Dis. 2010, 14, 513.
[37] Mouscadet, J.F.; Tchertanov, L. Raltegravir: molecular basis of its mechanism of action. Eur. J. Med. Res. 2009, 14, 5-16.
[38] Ashraf, B.; Chi-Huey, W. HIV-1 protease: mechanism and drug discovery. Persective. 2003, 1, 5-14.
[39] Ambrose, Z.; Herman, B.D.; Sheen, C.; Zelina, S.; Moore, K.; Tachedjian, L.G.; Nissley, D.V.; Sluis-Cremer, N. The human immunodeficiency virus type 1 nonnucleoside reverse transcriptase inhibitor resistance mutation I132M confers hypersensitivity to nucleoside analogs. J. Virol. 2009, 83, 3826-3833. |