In the present study, we aimed to investigate the interaction between atractylenolide II (AT-II) and CYP450 enzyme in human liver microsomes, and to lay a theoretical foundation for predicting the possible interaction of AT-II in combination with drugs. The chemical inhibition experiment was carried out with specific inhibitors to clarify the CYP450 subtypes affecting the metabolism of AT-II, and the mechanism, kinetics, and type of inhibition of CYP450 enzyme by AT-II were studied by using the probe-based determination method of human liver microsome system with the related data of IC50 and Ki as evaluation indexes. The metabolism of AT-II was affected by CYP1A2, CYP2C9 and CYP3A4 inhibitors, and the highest inhibition rates were 41.35%, 41.97% and 82.45%, respectively. The IC50 values of AT-II to five subtypes of P450 CYP2C9, CYP1A2, CYP2C19, CYP3A4 and CYP2D6 were 69.7, 84.3, 92.4, 173.8 and 190.1 μmol/L, respectively. The Ki values of AT-II to five subtypes of P450 CYP2C9, CYP1A2, CYP2C19, CYP3A4 and CYP2D6 were 190.6, 179.1, > 200, 72.2 and 66.8, respectively. Among these enzymes, AT-II exhibited non-competitive inhibition on CYP1A2, showed competitive inhibition on CYP2C9 and CYP3A4, and displayed mixed AT-II inhibition on CYP2C19 and CYP2D6. CYP1A2, CYP2C9 and CYP3A4 were involved in the AT-II metabolism, and AT-II exhibited different inhibitory mechanisms and strengths for the five subtypes of CYP450.