Aim Cysteine proteases are closely associated with many human and non-human pathological processes and are potential targets for metal ions especially Hg2+ and the related species. In the present work, on the basis of to the general study on the effects of some metal ions on the activity of papain, a well-known representative of cysteine protease family, the inhibitory effects of Hg2+ and polysulfide complexes were studied. Results All the metal ions tested (Hg2+, Cu2+, Ag+, Au3+, Zn2+, Zn2+, Cd2+, Fe3+, Mn2+, Pb2+, Yb3+) inhibit the activity of papain anda good correlation between the inhibitory potency and softness-and-hardness was observed. Among the metals, Hg2+ was shown to be a potent inhibitor of papain with a Ki of 2.7×10-6mol·L-1 among. Excessive amounts of glutathione and cysteine could reactivate the enzyme activity of papain deactivated by Hg2+. These evidences supported that Hg2+ might bind to the catalytic site of papain. Interestingly, Hg(II) polysulfide complexes were for the first time found to inhibit papain with a Ki of 7×10-6 mol·L-1, whose potency is close to a well known mercury compound, thimerosal (Ki = 2.7×10-6). In addition, Hg(II) polysulfide complexes exhibit good permeability(1.9×10-5cm/s) to caco-2 monolayer. Conclusion These results suggested that mercury polysulfide complexes might be potential bioactive species in the interaction with cysteine proteases and other- SH-content proteins, providing a new clue to understand the mechanism of the toxicological and pharmacological actions of cinnabar and other insoluble mercury compounds.