Journal of Chinese Pharmaceutical Sciences ›› 2025, Vol. 34 ›› Issue (5): 443-457.DOI: 10.5246/jcps.2025.05.034
• Original articles • Previous Articles Next Articles
Hongyan Yin1,2, Sihan You1,2, Jiayi Zhang3, Luyao Sun3, Jinmeng Cao3, Xinxing Liu4, Shuang Li3,4,*(), Chunyan Guo1,2,*(
)
Received:
2024-11-30
Revised:
2024-12-06
Accepted:
2025-01-15
Online:
2025-06-02
Published:
2025-06-01
Contact:
Shuang Li, Chunyan Guo
Supported by:
Supporting:
Hongyan Yin, Sihan You, Jiayi Zhang, Luyao Sun, Jinmeng Cao, Xinxing Liu, Shuang Li, Chunyan Guo. Proteomic alterations in the cortex and hippocampus of APP/PS1 mice: insights into potential mechanisms of Alzheimer's disease[J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(5): 443-457.
[1] |
Liu, Y.B.; Huang, Z.; Xu, Q.; Zhang, L.Y.; Liu, Q.; Xu, T.L. Portable electrochemical micro-workstation platform for simultaneous detection of multiple Alzheimer’s disease biomarkers. Mikrochim. Acta. 2022, 189, 91.
|
[2] |
Scheltens, P.; De, Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet. 2021, 397, 1577–1590.
|
[3] |
GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health. 2022, 7, e105–e125.
|
[4] |
Gonzalez-Cano, S.I.; Flores, G.; Guevara, J.; Morales-Medina, J.C.; Treviño, S.; Diaz, A. Polyoxidovanadates a new therapeutic alternative for neurodegenerative and aging diseases. Neural Regen. Res. 2024, 19, 571–577.
|
[5] |
Serý, O.; Povová, J.; Míšek, I.; Pešák, L.; Janout, V. Molecular mechanisms of neuropathological changes in Alzheimer’s disease: a review. Folia Neuropathol. 2013, 51, 1–9.
|
[6] |
Sędzikowska, A.; Szablewski, L. Insulin and insulin resistance in Alzheimer’s disease. Int. J. Mol. Sci. 2021, 22, 9987.
|
[7] |
Liu, G.D.; Yang, C.; Wang, X.; Chen, X.; Wang, Y.J.; Le, W.D. Oxygen metabolism abnormality and Alzheimer’s disease: an update. Redox Biol. 2023, 68, 102955.
|
[8] |
Jagust, W. Imaging the evolution and pathophysiology of Alzheimer disease. Nat. Rev. Neurosci. 2018, 19, 687–700.
|
[9] |
Heneka, M.T.; O’Banion, M.K. Inflammatory processes in Alzheimer’s disease. J. Neuroimmunol. 2007, 184, 69–91.
|
[10] |
Chami, M. Calcium signalling in Alzheimer’s disease: from pathophysiological regulation to therapeutic approaches. Cells. 2021, 10, 140.
|
[11] |
Zhang, R.X.; Song, Y.R.; Su, X.F. Necroptosis and Alzheimer’s disease: pathogenic mechanisms and therapeutic opportunities. J. Alzheimers Dis. 2023, 94, S367–S386.
|
[12] |
Epremyan, K.K.; Goleva, T.N.; Zvyagilskaya, R.A. Effect of tau protein on mitochondrial functions. Biochemistry. 2022, 87, 689–701.
|
[13] |
Lazarov, O.; Hollands, C. Hippocampal neurogenesis: Learning to remember. Prog. Neurobiol. 2016, 138, 1–18.
|
[14] |
Igarashi, K.M. Entorhinal cortex dysfunction in Alzheimer’s disease. Trends Neurosci. 2023, 46, 124–136.
|
[15] |
Rao, Y.L.; Ganaraja, B.; Murlimanju, B.V.; Joy, T.; Krishnamurthy, A.; Agrawal, A. Hippocampus and its involvement in Alzheimer’s disease: a review. 3 Biotech. 2022, 12, 55.
|
[16] |
Awasthi, D.; Nagarkoti, S.; Sadaf, S.; Aggarwal, H.; Gupta, S.K.; Chandra, T.; Kumar, Y.; Kumar, S.; Dikshit, M. Modulations in human neutrophil metabolome and S-glutathionylation of glycolytic pathway enzymes during the course of extracellular trap formation. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2023, 1869, 166581.
|
[17] |
Skendros, P.; Mitsios, A.; Chrysanthopoulou, A.; Mastellos, D.C.; Metallidis, S.; Rafailidis, P.; Ntinopoulou, M.; Sertaridou, E.; Tsironidou, V.; Tsigalou, C.; Tektonidou, M.; Konstantinidis, T.; Papagoras, C.; Mitroulis, I.; Germanidis, G.; Lambris, J.D.; Ritis, K. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J. Clin. Invest. 2020, 130, 6151–6157.
|
[18] |
Zenaro, E.; Pietronigro, E.; Della Bianca, V.; Piacentino, G.; Marongiu, L.; Budui, S.; Turano, E.; Rossi, B.; Angiari, S.; Dusi, S.; Montresor, A.; Carlucci, T.; Nanì, S.; Tosadori, G.; Calciano, L.; Catalucci, D.; Berton, G.; Bonetti, B.; Constantin, G. Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat. Med. 2015, 21, 880–886.
|
[19] |
Burmeister, A.; Vidal-Y-Sy, S.; Liu, X.B.; Mess, C.; Wang, Y.Y.; Konwar, S.; Tschongov, T.; Häffner, K.; Huck, V.; Schneider, S.W.; Gorzelanny, C. Impact of neutrophil extracellular traps on fluid properties, blood flow and complement activation. Front. Immunol. 2022, 13, 1078891.
|
[20] |
Bergamaschini, L.; Canziani, S.; Bottasso, B.; Cugno, M.; Braidotti, P.; Agostoni, A. Alzheimer’s β-amyloid peptides can activate the early components of complement classical pathway in a C1q-independent manner. Clin. Exp. Immunol. 2001, 115, 526–533.
|
[21] |
Sun, J.C.; Roy, S. The physical approximation of APP and BACE-1: a key event in Alzheimer’s disease pathogenesis. Dev. Neurobiol. 2018, 78, 340–347.
|
[22] |
Yu, J.P.; Niu, Y.; Sun, Q.; Xu, F.R.; Liang, L.; Wang, C.; Xu, P. Design and synthesis of 2-aminobenzimidazoles as potential BACE1 inhibitors. J. Chin. Pharm. Sci. 2017, 26, 650–659.
|
[23] |
Zhang, Y.; Wang, P.C. Age-related increase of insulin-degrading enzyme is inversely correlated with cognitive function in APPswe/PS1dE9 mice. Med. Sci. Monit. 2018, 24, 2446–2455.
|
[24] |
Rowland, H.A.; Moxon, S.R.; Corbett, N.J.; Hanson, K.; Fisher, K.; Kellett, K.A.B.; Hooper, N.M. Inhibition of insulin-degrading enzyme in human neurons promotes amyloid-β deposition. Neuronal Signal. 2023, 7, NS20230016.
|
[25] |
Abramov-Harpaz, K.; Miller, Y. Insights into non-proteolytic inhibitory mechanisms of polymorphic early-stage amyloid β oligomers by insulin degrading enzyme. Biomolecules. 2022, 12, 1886.
|
[26] |
Deng, S.F.; Yi, P.; Xu, M.L.; Yi, Q.; Feng, J.G. Dysfunctional gene splicing in glucose metabolism may contribute to Alzheimer’s disease. Chin. Med. J. 2023, 136, 666–675.
|
[27] |
Corraliza-Gomez, M.; Bermejo, T.; Lilue, J.T.; Rodriguez-Iglesias, N.; Valero, J.; Cozar-Castellano, I.; Arranz, E.; Sanchez, D.; Ganfornina, M.D. Insulin-degrading enzyme (IDE) as a modulator of microglial phenotypes in the context of Alzheimer’s disease and brain aging. J. Neuroinflammation. 2023, 20, 233.
|
[28] |
Corraliza-Gómez, M.; Lillo, C.; Cózar-Castellano, I.; Arranz, E.; Sanchez, D.; Ganfornina, M.D. Evolutionary origin of insulin-degrading enzyme and its subcellular localization and secretion mechanism: a study in microglial cells. Cells. 2022, 11, 227.
|
[29] |
Song, T.; Song, X.P.; Zhu, C.; Patrick, R.; Skurla, M.; Santangelo, I.; Green, M.; Harper, D.; Ren, B.Y.; Forester, B.P.; Öngür, D.; Du, F. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer’s disease: a meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Res. Rev. 2021, 72, 101503.
|
[30] |
Han, S.; Zhang, M.Y.; Jeong, Y.Y.; Margolis, D.J.; Cai, Q. The role of mitophagy in the regulation of mitochondrial energetic status in neurons. Autophagy. 2021, 17, 4182–4201.
|
[31] |
Kim, E.; Rath, E.M.; Tsang, V.H.M.; Duff, A.P.; Robinson, B.G.; Church, W.B.; Benn, D.E.; Dwight, T.; Clifton-Bligh, R.J. Structural and functional consequences of succinate dehydrogenase subunit B mutations. Endocr. Relat. Cancer. 2015, 22, 387–397.
|
[32] |
Goncalves, J.; Moog, S.; Morin, A.; Gentric, G.; Müller, S.; Morrell, A.P.; Kluckova, K.; Stewart, T.J.; Andoniadou, C.L.; Lussey-Lepoutre, C.; Bénit, P.; Thakker, A.; Vettore, L.; Roberts, J.; Rodriguez, R.; Mechta-Grigoriou, F.; Gimenez-Roqueplo, A.P.; Letouzé, E.; Tennant, D.A.; Favier, J. Loss of SDHB promotes dysregulated iron homeostasis, oxidative stress, and sensitivity to ascorbate. Cancer Res. 2021, 81, 3480–3494.
|
[33] |
Dona, M.; Neijman, K.; Timmers, H.J.L.M. MITOCHONDRIA: Succinate dehydrogenase subunit B-associated phaeochromocytoma and paraganglioma. Int. J. Biochem. Cell Biol. 2021, 134, 105949.
|
[34] |
Yi, F.; Cai, C.M.; Ruan, B.Z.; Hao, M.G.; Yeo, S.K.; Haas, M.; Yang, F.C.; Zhang, X.T.; Guan, J.L. Regulation of RB1CC1/FIP200 stability and autophagy function by CREBBP-mediated acetylation in an intrinsically disordered region. Autophagy. 2023, 19, 1662–1677.
|
[35] |
Tang, X.; Walter, E.; Wohleb, E.; Fan, Y.B.; Wang, C.R. ATG5 (autophagy related 5) in microglia controls hippocampal neurogenesis in Alzheimer disease. Autophagy. 2024, 20, 847–862.
|
[36] |
Chano, T.; Okabe, H.; Hulette, C.M. RB1CC1 insufficiency causes neuronal atrophy through mTOR signaling alteration and involved in the pathology of Alzheimer’s diseases. Brain Res. 2007, 1168, 97–105.
|
[1] | Xiaodan Wang, Qinqing Li, Wanwei Gui, Dongyan Wu, Jinmiao Chai, Wenbin He, Junlong Zhang. Investigation of the apoptotic mechanism in hippocampal and retinal neurons of db/db mice induced by Dihuangyinzi decoction [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(10): 918-931. |
[2] | Xin Li, Yan Shang, Mengxin Qi, Guoheng Hu. Proteomic study of Rehmannia glutinosa and Cornus officinalis herbal pair on the brain tissue of rats with ischemic stroke [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(1): 32-44. |
[3] | Yinglin Yang, Shanshan Zhang, Man Liu, Yuehua Wang, Guanhua Du. Xiao-Xu-Ming decoction extract ameliorates brain injury in rats with thrombotic focal ischemic stroke and understanding possible therapeutic targets using proteomics [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(6): 468-483. |
[4] | Jian Zhang, Mengmeng Qin, Dan Yang, Wenbing Dai, Hua Zhang, Xueqing Wang, Bing He, Qiang Zhang. Proteomic analysis on cellular response induced by nanoparticles reveals the nano-trafficking pathway through epithelium [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(2): 107-118. |
[5] | Yujing Song, Xuyang Zhao, Qian Chen, Yan Song, Wanyu Lei, Yuxin Yin, Weining Ma, Zhuo Huang. Application of proteomic approaches to assess the effect of anti-epileptic drug on seizure foci [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(1): 13-28. |
[6] | Siyu Zhao, Xiaoyan Liu, Yuanjun Zhu, Ye Liu, Yinye Wang. The proteomic study and the target discovery of W026B, a new compound with brain protective effect [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(6): 381-392. |
[7] | Xiaolu Yang, Xingyang Xue, Yan Lin, Qiyun Huang, Maoyan Mo, Shumei Wang, Jiang Meng. Chemical constituents from the Moutan Cortex charcoal and their potential coagulation activities [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(9): 608-616. |
[8] | Ling Wang, Mingbo Zhao, Yong Jiang, Pengfei Tu, Xiaoyu Guo. Quality standard study on Dictamni Cortex [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(4): 298-303. |
[9] | Pengfei Yuan, Yajing Ma, Dan Su, Mingying Shang, Feng Xu, Guangxue Liu, Niloufar Iranmanesh, Lanfang Li, Tingliang Jiang, Shaoqing Cai. Quantification of seven phenylpropanoid compounds in Chinese Cinnamomi Cortex and Ramulus by HPLC [J]. Journal of Chinese Pharmaceutical Sciences, 2015, 24(9): 591-599. |
[10] | Tianzhi Cai, Wen Qi, Lianmei Yang, Guangzhong Tu, Rong Yang, Kehui Xie, Hongzheng Fu*. Chemical constituents of Pseudolarix kaempferi Gord [J]. , 2012, 21(5): 428-435. |
[11] | HE Zhen-dan, QIAO Chun-feng, HAN Quan-bin, SONG Jing-zheng, CHENG Chuen-lung, XU Hong-xi, JIANG Ren-wang, WONG Ka-lok, BUT Paul Pui-hay, SHAW Pang-chui*. Comparison and Quality Assessment of Cassia Bark (Cortex Cinnamomi) by Thin Layer Chromatography [J]. , 2006, 15(4): 195-199. |
[12] | Li Yan, Long Hong, Liu Huwei*. Determination of Magnolol and Honokiol in Cortex Magnoliae Officinalis by Capillary Zone Electrophoresis [J]. , 2000, 9(2): 80-83. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||