Journal of Chinese Pharmaceutical Sciences ›› 2024, Vol. 33 ›› Issue (11): 1040-1057.DOI: 10.5246/jcps.2024.11.075
• Original articles • Previous Articles Next Articles
Jingjing Su1, Kangkang Su2, Yanping Song1, Lihui Hao3, Xing Wang4, Linquan Yang4, Chao Wang4, Shuxia Chen2,*(), Jian Gu2,*(
)
Received:
2024-02-16
Revised:
2024-04-06
Accepted:
2024-05-08
Online:
2024-12-10
Published:
2024-12-10
Contact:
Shuxia Chen, Jian Gu
Supporting:
Jingjing Su, Kangkang Su, Yanping Song, Lihui Hao, Xing Wang, Linquan Yang, Chao Wang, Shuxia Chen, Jian Gu. Bioinformatics-based investigation of the therapeutic potential of Tongxinluo capsule in acute myocardial infarction[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(11): 1040-1057.
[1] |
Danchin, N.; Popovic, B.; Puymirat, E.; Goldstein, P.; Belle, L.; Cayla, G.; Roubille, F.; Lemesle, G.; Ferrières, J.; Schiele, F.; Simon, T.; Investigators, T.F.M. Five-year outcomes following timely primary percutaneous intervention, late primary percutaneous intervention, or a pharmaco-invasive strategy in ST-segment elevation myocardial infarction: the FAST-MI programme. Eur. Heart J. 2020, 41, 858–866.
|
[2] |
Thrane, P.G.; Kristensen, S.D.; Olesen, K.K.W.; Mortensen, L.S.; Bøtker, H.E.; Thuesen, L.; Hansen, H.S.; Abildgaard, U.; Engstrøm, T.; Andersen, H.R.; Maeng, M. 16-year follow-up of the Danish Acute Myocardial Infarction 2 (DANAMI-2) trial: primary percutaneous coronary intervention vs. fibrinolysis in ST-segment elevation myocardial infarction. Eur. Heart J. 2020, 41, 847–854.
|
[3] |
Taqueti, V.R.; Mitchell, R.N.; Lichtman, A.H. Protecting the pump: controlling myocardial inflammatory responses. Annu. Rev. Physiol. 2006, 68, 67–95.
|
[4] |
Granger, D.N.; Korthuis, R.J. Physiologic mechanisms of postischemic tissue injury. Annu. Rev. Physiol. 1995, 57, 311–332.
|
[5] |
Vinten-Johansen, J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc. Res. 2004, 61, 481–497.
|
[6] |
Yang, Y.J.; Li, X.D.; Chen, G.H.; Xian, Y.; Zhang, H.T.; Wu, Y.; Yang, Y.M.; Wu, J.H.; Wang, C.T.; He, S.H.; Wang, Z.; Wang, Y.X.; Wang, Z.F.; Liu, H.; Wang, X.P.; Zhang, M.Z.; Zhang, J.; Li, J.; An, T.; Guan, H.; Li, L.; Shang, M.X.; Yao, C.; Han, Y.L.; Zhang, B.L.; Gao, R.L.; Peterson, E.D.; Investigators, C.A. Traditional Chinese medicine compound (Tongxinluo) and clinical outcomes of patients with acute myocardial infarction: the CTS-AMI randomized clinical trial. JAMA. 2023, 330, 1534–1545.
|
[7] |
Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; Yefanov, A.; Lee, H.; Zhang, N.; Robertson, C.L.; Serova, N.; Davis, S.; Soboleva, A. NCBI GEO: archive for functional genomics data sets: update. Nucleic Acids Res. 2013, 41, D991–D995.
|
[8] |
Fang, S.S.; Dong, L.; Liu, L.; Guo, J.C.; Zhao, L.H.; Zhang, J.Y.; Bu, D.C.; Liu, X.K.; Huo, P.P.; Cao, W.C.; Dong, Q.Y.; Wu, J.R.; Zeng, X.X.; Wu, Y.; Zhao, Y. HERB: a high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res. 2021, 49, D1197–D1206.
|
[9] |
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. Biomolecules. 2014, 6, 13.
|
[10] |
UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nat. Commun. 2021, 49, D480–D489.
|
[11] |
Liao, Y.X.; Wang, J.; Jaehnig, E.J.; Shi, Z.A.; Zhang, B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019, 47, W199–W205.
|
[12] |
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612.
|
[13] |
Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.G.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Meth. 2015, 12, 453–457.
|
[14] |
Langfelder, P.; Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008, 9, 559.
|
[15] |
White, H.D.; Thygesen, K.; Alpert, J.S.; Jaffe, A.S. Clinical implications of the Third Universal Definition of Myocardial Infarction. Heart. 2014, 100, 424–432.
|
[16] |
Frangogiannis, N.G. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol. 2014, 11, 255–265.
|
[17] |
Westman, P.C.; Lipinski, M.J.; Luger, D.; Waksman, R.; Bonow, R.O.; Wu, E.; Epstein, S.E. Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J. Am. Coll. Cardiol. 2016, 67, 2050–2060.
|
[18] |
Mezzaroma, E.; Toldo, S.; Farkas, D.; Seropian, I.M.; Van Tassell, B.W.; Salloum, F.N.; Kannan, H.R.; Menna, A.C.; Voelkel, N.F.; Abbate, A. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc. Natl. Acad. Sci. USA. 2011, 108, 19725–19730.
|
[19] |
Li, M.; Li, C.; Chen, S.; Sun, Y.; Hu, J.; Zhao, C.; Qiu, R.; Zhang, X.; Zhang, Q.; Tian, G.; Shang, H. Potential effectiveness of Chinese patent medicine Tongxinluo capsule for secondary prevention after acute myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Front. Pharmacol. 2018, 9, 830.
|
[20] |
Qi, Y.; Liu, W.; Yan, X.; Zhang, C.; Zhang, C.; Liu, L.; Zheng, X.; Suo, M.; Ti, Y.; Ni, M.; Zhang, M.; Bu, P. Tongxinluo may alleviate inflammation and improve the stability of atherosclerotic plaques by changing the intestinal flora. Front. Pharmacol. 2022, 13, 805266.
|
[21] |
Li, G.; Xu, Q.; Han, K.; Yan, W.; Huang, C. Experimental evidence and network pharmacology-based analysis reveal the molecular mechanism of Tongxinluo capsule administered in coronary heart diseases. Biosci. Rep. 2020, 40, BSR20201349.
|
[22] |
Yu, H.; Lin, L.B.; Zhang, Z.Q.; Zhang, H.Y.; Hu, H.B. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct. Target. Ther. 2020, 5, 209.
|
[23] |
Yang, S.; Li, F.; Lu, S.; Ren, L.; Bian, S.; Liu, M.; Zhao, D.; Wang, S.; Wang, J. Ginseng root extract attenuates inflammation by inhibiting the MAPK/NF-kappaB signaling pathway and activating autophagy and p62-Nrf2-Keap1 signaling in vitro and in vivo. J. Ethnopharmacol. 2022, 283, 114739.
|
[24] |
Wu, Z.; Zhang, Z.; Lei, Z.; Lei, P. CD14: biology and role in the pathogenesis of disease. Cytokine Growth Factor Rev. 2019, 48, 24–31.
|
[25] |
An, D.; Hao, F.; Zhang, F.; Kong, W.; Chun, J.; Xu, X.; Cui, M.Z. CD14 is a key mediator of both lysophosphatidic acid and lipopolysaccharide induction of foam cell formation. J. Biol. Chem. 2017, 292, 14391–14400.
|
[26] |
de Carvalho, D.C.; Fonseca, F.A.H.; Izar, M.C.O.; Silveira, A.L.P.A.; Tuleta, I.D.; do Amaral, J.B.; Neves, L.M.; Bachi, A.L.L.; França, C.N. Monocytes presenting a pro-inflammatory profile persist in patients submitted to a long-term pharmacological treatment after acute myocardial infarction. Front. Physiol. 2022, 13, 1056466.
|
[27] |
Choudhary, D.; Jansson, I.; Stoilov, I.; Sarfarazi, M.; Schenkman, J.B. Metabolism of retinoids and arachidonic acid by human and mouse cytochrome P450 1b1. Drug Metab. Dispos. Biol. Fate Chem. 2004, 32, 840–847.
|
[28] |
Qi, L.; Qi, Q.B.; Prudente, S.; Mendonca, C.; Andreozzi, F.; di Pietro, N.; Sturma, M.; Novelli, V.; Mannino, G.C.; Formoso, G.; Gervino, E.V.; Hauser, T.H.; Muehlschlegel, J.D.; Niewczas, M.A.; Krolewski, A.S.; Biolo, G.; Pandolfi, A.; Rimm, E.; Sesti, G.; Trischitta, V.; Hu, F.; Doria, A. Association between a genetic variant related to glutamic acid metabolism and coronary heart disease in individuals with type 2 diabetes. JAMA. 2013, 310, 821–828.
|
[29] |
Eelen, G.; Dubois, C.; Cantelmo, A.R.; Goveia, J.; Brüning, U.; DeRan, M.; Jarugumilli, G.; van Rijssel, J.; Saladino, G.; Comitani, F.; Zecchin, A.; Rocha, S.; Chen, R.Y.; Huang, H.L.; Vandekeere, S.; Kalucka, J.; Lange, C.; Morales-Rodriguez, F.; Cruys, B.; Treps, L.; Ramer, L.; Vinckier, S.; Brepoels, K.; Wyns, S.; Souffreau, J.; Schoonjans, L.; Lamers, W.H.; Wu, Y.; Haustraete, J.; Hofkens, J.; Liekens, S.; Cubbon, R.; Ghesquière, B.; Dewerchin, M.; Gervasio, F.L.; Li, X.R.; van Buul, J.D.; Wu, X.; Carmeliet, P. Role of glutamine synthetase in angiogenesis beyond glutamine synthesis. Nature. 2018, 561, 63–69.
|
[30] |
Falk, E.; Nakano, M.; Bentzon, J.F.; Finn, A.V.; Virmani, R. Update on acute coronary syndromes: the pathologists’ view. Eur. Heart J. 2013, 34, 719–728.
|
[31] |
Li, T.; Li, X.; Feng, Y.; Dong, G.; Wang, Y.; Yang, J. The role of matrix metalloproteinase-9 in atherosclerotic plaque instability. Mediat. Inflamm. 2020, 2020, 3872367.
|
[32] |
Cozen, A.E.; Moriwaki, H.; Kremen, M.; DeYoung, M.B.; Dichek, H.L.; Slezicki, K.I.; Young, S.G.; Véniant, M.; Dichek, D.A. Macrophage-targeted overexpression of urokinase causes accelerated atherosclerosis, coronary artery occlusions, and premature death. Circulation. 2004, 109, 2129–2135.
|
[33] |
Pan, Q.; Hui, D.; Hu, C. Associations of CD14 variants with the triglyceride levels and risk of myocardial infarction in an Eastern Chinese Han population. Int. Immunopharmacol. 2021, 99, 108041.
|
[34] |
Majchrzak-Gorecka, M.; Majewski, P.; Grygier, B.; Murzyn, K.; Cichy, J. Secretory leukocyte protease inhibitor (SLPI), a multifunctional protein in the host defense response. Cytokine Growth Factor Rev. 2016, 28, 79–93.
|
[35] |
Nernpermpisooth, N.; Prompunt, E.; Kumphune, S. An in vitro endothelial cell protective effect of secretory leukocyte protease inhibitor against simulated ischaemia/reperfusion injury. Exp. Ther. Med. 2017, 14, 5793–5800.
|
[36] |
Sarecka-Hujar, B.; Zak, I.; Krauze, J. Interactions between rs5498 polymorphism in the ICAM1 gene and traditional risk factors influence susceptibility to coronary artery disease. Clin. Exp. Med. 2009, 9, 117–124.
|
[37] |
Grebe, A.; Hoss, F.; Latz, E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ. Res. 2018, 122, 1722–1740.
|
[38] |
Sager, H.B.; Heidt, T.; Hulsmans, M.; Dutta, P.; Courties, G.; Sebas, M.; Wojtkiewicz, G.R.; Tricot, B.; Iwamoto, Y.; Sun, Y.; Weissleder, R.; Libby, P.; Swirski, F.K.; Nahrendorf, M. Targeting interleukin-1β reduces leukocyte production after acute myocardial infarction. Circulation. 2015, 132, 1880–1890.
|
[39] |
Ngkelo, A.; Richart, A.; Kirk, J.A.; Bonnin, P.; Vilar, J.; Lemitre, M.; Marck, P.; Branchereau, M.; Le Gall, S.; Renault, N.; Guerin, C.; Ranek, M.J.; Kervadec, A.; Danelli, L.; Gautier, G.; Blank, U.; Launay, P.; Camerer, E.; Bruneval, P.; Menasche, P.; Heymes, C.; Luche, E.; Casteilla, L.; Cousin, B.; Rodewald, H.R.; Kass, D.A.; Silvestre, J.S. Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction. J. Exp. Med. 2016, 213, 1353–1374.
|
[40] |
Jung, K.; Kim, P.; Leuschner, F.; Gorbatov, R.; Kim, J.K.; Ueno, T.; Nahrendorf, M.; Yun, S.H. Endoscopic time-lapse imaging of immune cells in infarcted mouse hearts. Circ Res. 2013, 112, 891–899.
|
[41] |
Li, W.; Hsiao, H.M.; Higashikubo, R.; Saunders, B.T.; Bharat, A.; Goldstein, D.R.; Krupnick, A.S.; Gelman, A.E.; Lavine, K.J.; Kreisel, D. Heart-resident CCR2+ macrophages promote neutrophil extravasation through TLR9/MyD88/CXCL5 signaling. JCI Insight. 2016, 1, 87315.
|
[42] |
Liu, J.Q.; Zhao, M.; Zhang, Z.; Cui, L.Y.; Zhou, X.; Zhang, W.; Chu, S.F.; Zhang, D.Y.; Chen, N.H. Rg1 improves LPS-induced Parkinsonian symptoms in mice via inhibition of NF-κB signaling and modulation of M1/M2 polarization. Acta Pharmacol. Sin. 2020, 41, 523–534.
|
[43] |
Ma, Y.G.; Mouton, A.J.; Lindsey, M.L. Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction. Transl. Res. 2018, 191, 15–28.
|
[44] |
Chen, Y.; Waqar, A.B.; Nishijima, K.; Ning, B.; Kitajima, S.; Matsuhisa, F.; Chen, L.; Liu, E.; Koike, T.; Yu, Y.; Zhang, J.; Chen, Y.E.; Sun, H.; Liang, J.; Fan, J. Macrophage-derived MMP-9 enhances the progression of atherosclerotic lesions and vascular calcification in transgenic rabbits. Eur. Heart J. Case Rep. 2020, 24, 4261–4274.
|
[45] |
Im, D.S. Pro-resolving effect of ginsenosides as an anti-inflammatory mechanism of Panax ginseng. Biomolecules. 2020, 10, E444.
|
[46] |
Sun, K.; Su, C.; Li, W.; Gong, Z.; Sha, C.; Liu, R. Quality markers based on phytochemical analysis and anti-inflammatory screening: an integrated strategy for the quality control of Dalbergia odorifera by UHPLC-Q-Orbitrap HRMS. Phytomedicine. 2021, 84, 153511.
|
[47] |
Ham, S.A.; Hwang, J.S.; Kang, E.S.; Yoo, T.; Lim, H.H.; Lee, W.J.; Paek, K.S.; Seo, H.G. Ethanol extract of Dalbergia odorifera protects skin keratinocytes against ultraviolet B-induced photoaging by suppressing production of reactive oxygen species. Biosci. Biotechnol. Biochem. 2015, 79, 760–766.
|
[48] |
Tao, Y.; Wang, Y. Bioactive sesquiterpenes isolated from the essential oil of Dalbergia odorifera T. Chen. Fitoterapia. 2010, 81, 393–396.
|
[49] |
Fan, Z.M.; Wang, D.Y.; Yang, J.M.; Lin, Z.X.; Lin, Y.X.; Yang, A.L.; Fan, H.; Cao, M.; Yuan, S.Y.; Liu, Z.J.; Zhou, X.; Wang, Y.H. Dalbergia odorifera extract promotes angiogenesis through upregulation of VEGFRs and PI3K/MAPK signaling pathways. J. Ethnopharmacol. 2017, 204, 132–141.
|
[50] |
Li, X.; Wu, L.; Liu, W.; Jin, Y.; Chen, Q.; Wang, L.; Fan, X.; Li, Z.; Cheng, Y. A network pharmacology study of Chinese medicine QiShenYiQi to reveal its underlying multi-compound, multi-target, multi-pathway mode of action. PLoS One. 2014, 9, e95004.
|
[51] |
Cai, M.; Yu, Z.; Wang, L.; Song, X.; Zhang, J.; Zhang, Z.; Zhang, W.; Li, W.; Xiang, J.; Cai, D. Tongxinluo reduces brain edema and inhibits post-ischemic inflammation after middle cerebral artery occlusion in rats. J. Ethnopharmacol. 2016, 181, 136–145.
|
[52] |
Wang, C.H.; Wang, R.; Cheng, X.M.; He, Y.Q.; Wang, Z.T.; Wu, C.; Cao, J. Comparative pharmacokinetic study of paeoniflorin after oral administration of decoction of Radix Paeoniae Rubra and Radix Paeoniae Alba in rats. J. Ethnopharmacol. 2008, 117, 467–472.
|
[1] | Yongchun Gao, Xi Yang, Liqin Wang. Flavonoid from the twigs and leaves of Erythrina variegata [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(7): 659-665. |
[2] | Xiaohang Wang, Le Wang, Luanjuan Xiao, Chunbin Lu. Formononetin inhibits benign prostatic hyperplasia through estrogen receptors [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(3): 216-229. |
[3] | Qinqing Li, Yanli Xin, Pulin Liu, Kaiwen Li, Caifang Jing, Xuelan Zhang, Wenbin He. Deciphering the therapeutic mechanisms of Fructus Ligustri Lucidi on diabetic nephropathy via bioinformatics analysis [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(11): 1025-1039. |
[4] | Yufang Wu, Qingzhi Guo, Rui Li, Shikun Zhang. Solvation dynamics of furazolidone in pure organic solvents and aqueous EDTA disodium salt mixtures: molecular interactions and thermodynamic insights [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(10): 906-917. |
[5] | Eric Wei Chiang Chan, Ying Ki Ng, Hung Tuck Chan, Siu Kuin Wong. An overview of flavonoids from Sophora flavescens (kushen) with some emphasis on the anticancer properties of kurarinone and sophoraflavanone G [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(8): 603-615. |
[6] | Yuxia Zhu, Lingjian Zhang, Yiming Hu, Weihua Liu, Liping Guan, Lin Lin. Study on synthesis of naringenin derivatives and cholinesterase inhibitory activity in marine Chinese medicine [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(8): 636-644. |
[7] | Huimin Wang, Yuying Zhao, Xiaoyan Xu, Humin Xie, Meiting Jiang, Hongda Wang, Bei Xu, Xiaohang Li, Simiao Wang, Boxue Chen, Feifei Yang, Wenzhi Yang. Steaming-induced conversion of the volatile components for P. ginseng, P. quinquefolius, and P. notoginseng by headspace sampling gas chromatography-mass spectrometry (HS-GC-MS) and untargeted metabolomics analysis [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(8): 645-664. |
[8] | Juntao Fu, Chunjie Nie, Min Li, Jia Li, Shuzhang Du. Analysis of 365 illogical prescriptions for parenteral feeding from a hospital's intravenous drug dispensing center [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(6): 487-493. |
[9] | Shuang Li, Minggang Dong, Chunyan Guo, Shuangshuang Li, Sihan You, Ye Wan, Xinxing Liu. Taohong Siwu dispensing granules alleviate rotenone-induced SH-SY5Y cellular cytotoxicity by rescuing mitochondrial dysfunction and amino acid metabolism disarrangements [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 360-378. |
[10] | Guangzhi Shen, Xingang Cui, Zhimin Na, Yulong Zou, Guihua Zou. A network pharmacology approach to explore the pharmacological mechanism of Epimedium brevicornum in sexual dysfunction [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 379-391. |
[11] | Yajing Li, Yawen Bai, Yu Du, Changhong Yan, Chunjie Ma, Lining Sun, Fengyue Bu, Haoyang Yan. Yu Ping Feng Powder for chronic glomerulonephritis treatment: A meta-analysis and network pharmacology study [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(12): 1006-1026. |
[12] | Dongsheng Wei, Xiaosheng Liu, Luzhen Li, Jiajie Qi, Yuxuan Wang, Zhe Zhang. Unraveling the biological and immunological mechanisms of safflower-danshen in the treatment of coronary atherosclerotic heart disease: a comprehensive bioinformatics and single-cell sequencing approach [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(10): 796-812. |
[13] | Jun Ma, Liangyu Ni, Qiyun Zhu, Zhao Yang, Bin Jiang. Cost-utility of siltuximab injection for idiopathic multicentric Castleman disease (iMCD) in China [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(10): 842-851. |
[14] | Yahui Zhao, Yahui Zhao, Juan Zhao, Jiye Lu, Wei Tian, Jinpeng Hu, Bin Su, Lihua Fu, Ran Guo. Dexamethasone up-regulates TNFAIP3 to attenuate inflammatory response with smoke inhalation-induced acute lung injury based on the GEO database [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(9): 689-697. |
[15] | Ye Yuan, Yanan Li, Qing Zhao, Bo Yu, Xiuling Yang. Evaluation of ceftriaxone dosing regimens based on PK/PD models and Monte Carlo simulations [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(5): 382-388. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||