Journal of Chinese Pharmaceutical Sciences ›› 2024, Vol. 33 ›› Issue (6): 511-524.DOI: 10.5246/jcps.2024.06.038
• Original articles • Previous Articles Next Articles
Received:
2023-12-06
Revised:
2024-01-12
Accepted:
2024-02-18
Online:
2024-06-30
Published:
2024-06-30
Contact:
Yi Wang
Supported by:
Supporting:
Shisheng Han, Yi Wang. Elucidating the mechanisms underlying Taohong Siwu Decoction in preventing arteriovenous fistula failure: A comprehensive study combining network pharmacology, molecular docking, and dynamic simulation[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(6): 511-524.
[1] |
Ravani, P.; Palmer, S.C.; Oliver, M.J.; Quinn, R.R.; MacRae, J.M.; Tai, D.J.; Pannu, N.I.; Thomas, C.; Hemmelgarn, B.R.; Craig, J.C.; Manns, B.; Tonelli, M.; Strippoli, G.F.M.; James, M.T. Associations between hemodialysis access type and clinical outcomes: a systematic review. J. Am. Soc. Nephrol. 2013, 24, 465–473.
|
[2] |
Al-Jaishi, A.A.; Oliver, M.J.; Thomas, S.M.; Lok, C.E.; Zhang, J.C.; Garg, A.X.; Kosa, S.D.; Quinn, R.R.; Moist, L.M. Patency rates of the arteriovenous fistula for hemodialysis: a systematic review and meta-analysis. Am. J. Kidney Dis. 2014, 63, 464–478.
|
[3] |
Polkinghorne, K.R.; McDonald, S.P.; Atkins, R.C.; Kerr, P.G. Vascular access and all-cause mortality. J. Am. Soc. Nephrol. 2004, 15, 477–486.
|
[4] |
Viecelli, A.K.; Mori, T.A.; Roy-Chaudhury, P.; Polkinghorne, K.R.; Hawley, C.M.; Johnson, D.W.; Pascoe, E.M.; Irish, A.B. The pathogenesis of hemodialysis vascular access failure and systemic therapies for its prevention: optimism unfulfilled. Semin. Dial. 2018, 31, 244–257
|
[5] |
Irish, A.B.; Viecelli, A.K.; Hawley, C.M.; Hooi, L.S.; Pascoe, E.M.; Paul-Brent, P.A.; Badve, S.V.; Mori, T.A.; Cass, A.; Kerr, P.G.; Voss, D.; Ong, L.M.; Polkinghorne, K.R. Effect of fish oil supplementation and aspirin use on arteriovenous fistula failure in patients requiring hemodialysis. JAMA Intern. Med. 2017, 177, 184–193.
|
[6] |
Saran, R.; Dykstra, D.M.; Wolfe, R.A.; Gillespie, B.; Held, P.J.; Young, E.W. Association between vascular access failure and the use of specific drugs: the dialysis outcomes and practice patterns study (DOPPS). Am. J. Kidney Dis. 2002, 40, 1255–1263.
|
[7] |
Herrington, W.; Emberson, J.; Staplin, N.; Blackwell, L.; Fellström, B.; Walker, R.; Levin, A.; Hooi, L.S.; Massy, Z.A.; Tesar, V.; Reith, C.; Haynes, R.; Baigent, C.; Landray, M.J.; Investigators, S.H.A.R.P. The effect of lowering LDL cholesterol on vascular access patency: post hoc analysis of the Study of Heart and Renal Protection. Clin. J. Am. Soc. Nephrol. 2014, 9, 914–919.
|
[8] |
Chen, F.A.; Chien, C.C.; Chen, Y.W.; Wu, Y.T.; Lin, C.C. Angiotensin converting-enzyme inhibitors, angiotensin receptor blockers, and calcium channel blockers are associated with prolonged vascular access patency in uremic patients undergoing hemodialysis. PLoS One. 2016, 11, e0166362.
|
[9] |
Peden, E.K.; Lucas, J.F.III.; Browne, B.J.; Settle, S.M.; Scavo, V.A.; Bleyer, A.J.; Ozaki, C.K.; Teruya, T.H.; Wilson, S.E.; Mishler, R.E.; Ferris, B.L.; Hendon, K.S.; Moist, L.; Dixon, B.S.; Wong, M.D.; Magill, M.; Lindow, F.; Gustafson, P.; Burke, S.K.; PATENCY-2 Investigators. PATENCY-2 trial of vonapanitase to promote radiocephalic fistula use for hemodialysis and secondary patency. J. Vasc. Access. 2022, 23, 265–274.
|
[10] |
Tong, Y.Q.; Jing, Y.E.; Qu, Z.P. Effect of Chinese herbal fomentation on arteriovenous fistula maturation. J. Altern. Complement. Med. 2011, 17, 749–753.
|
[11] |
Wang, R.R.; Deng, L.; Zhang, G.Q; Chen, X.Y.; Bao, K. The effects of iontophoretic injections of salvia miltiorrhiza on the maturation of the arteriovenous fistula: A randomized, controlled trial. Altern. Ther. Health Med. 2016, 22, 18–22.
|
[12] |
Su, P.L.; Bao, K.; Peng, H.G.; Mao, W.; Wang, G.S.; Yang, N.Z.; Geng, W.J.; Lin, Y.Q.; Jie, X.N. Effects of Tongmai oral liquid in femoral ateriovenous fistula. BMC Complement. Altern. Med. 2015, 15, 311.
|
[13] |
Liu, Y.; Yin, H.J.; Shi, D.Z.; Chen, K.J. Chinese herb and formulas for promoting blood circulation and removing blood stasis and antiplatelet therapies. Evid. Based Complement. Alternat. Med. 2012, 2012, 184503.
|
[14] |
Han, S.S.; He, X.J.; Gu, Y.D.; Yao, T.W.; Xu, Y.Q.; Wang, Y. Therapeutic effect of treatment of traditional Chinese medicine on protecting arteriovenous fistula in hemodialysis and systematic review of medication analysis. Chin. J. Integr. Tradit. West. Nephrol. 2020, 21, 1060–1063.
|
[15] |
Wu, C.J.; Chen, J.T.; Yen, T.L.; Jayakumar, T.; Chou, D.S.; Hsiao, G.; Sheu, J.R. Neuroprotection by the traditional Chinese medicine, Tao-Hong-Si-wu-Tang, against middle cerebral artery occlusion-induced cerebral ischemia in rats. Evid. Based Complement. Alternat. Med. 2011, 2011, 803015.
|
[16] |
Yan, H.; Wang, J.; Fu, H.; Yang, M.; Qu, M.; Fang, Z.E. Discussion on the potential target and mechanism of Dachaihu Decoction in treating hyperlipidemia based on network pharmacology. J. Chin. Pharm. Sci. 2023, 32, 446–459.
|
[17] |
Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2015, I, 40–270.
|
[18] |
Shang, Y.; Lin, X.Y.; Zhang, T.T.; Xie, L.H.; Hu, G.H. Investigation on the mechanism of YQHX against cerebral ischemic injury based on network pharmacology and molecular docking. J. Chin. Pharm. Sci. 2022, 31, 117–133.
|
[19] |
Wang, M.Y.; Zhang, K.Y.; Chen, X.; Fu, H.; Peng, S.C. Study on the mechanism of Rhinoceros Horn and Rehmannia Decoction in the treatment of systemic lupus erythematosus based on the method of network pharmacology. J. Chin. Pharm. Sci. 2023, 32, 351–359.
|
[20] |
Nan, B.Y.; Xiong, G.F.; Zhao, Z.R.; Gu, X.; Huang, X.S. Comprehensive identification of potential crucial genes and miRNA-mRNA regulatory networks in papillary thyroid cancer. BioMed Res. Int. 2021, 2021, 1–25.
|
[21] |
Zhou, Y.Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523.
|
[22] |
Metascape. Statistics for enrichment analysis. This article can be found online at http://metascape.org/.
|
[23] |
Bitencourt-Ferreira, G.; Pintro, V.O.; de Azevedo, W.F. Jr. Docking with AutoDock4. Methods Mol. Biol. 2019, 2053, 125–148.
|
[24] |
Li, X.Y.; Zhang, C.Y.; Tan, Z.J.; Yuan, J.L. Network pharmacology-based analysis of gegenqinlian decoction regulating intestinal microbial activity for the treatment of diarrhea. Evid. Based Complement. Altern. Med. 2021, 2021, 1–13.
|
[25] |
Guo, L.J.; Shi, H.X.; Zhu, L.M. Siteng Fang reverses multidrug resistance in gastric cancer: a network pharmacology and molecular docking study. Front. Oncol. 2021, 11, 671382.
|
[26] |
Chen, Z.G.; Huang, J.R.; Pu, H.Y.; Yang, Q.; Fang, C.L. The effects of HHP (high hydrostatic pressure) on the interchain interaction and the conformation of amylopectin and double-amylose molecules. Int. J. Biol. Macromol. 2020, 155, 91–102.
|
[27] |
DeVita, M.V.; Khine, S.K.; Shivarov, H. Novel approaches to arteriovenous access creation, maturation, suitability, and durability for dialysis. Kidney Int. Rep. 2020, 5, 769–778.
|
[28] |
Lawson, J.H.; Niklason, L.E.; Roy-Chaudhury, P. Challenges and novel therapies for vascular access in haemodialysis. Nat. Rev. Nephrol. 2020, 16, 586–602.
|
[29] |
Lee, T. Novel paradigms for dialysis vascular access: downstream vascular biology: is there a final common pathway? Clin. J. Am. Soc. Nephrol. 2013, 8, 2194–2201.
|
[30] |
Hu, H.D.; Patel, S.; Hanisch, J.J.; Santana, J.M.; Hashimoto, T.; Bai, H.L.; Kudze, T.; Foster, T.R.; Guo, J.M.; Yatsula, B.; Tsui, J.; Dardik, A. Future research directions to improve fistula maturation and reduce access failure. Semin. Vasc. Surg. 2016, 29, 153–171.
|
[31] |
Chiu, J.J.; Shu, C.E. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 2011, 91, 327–387.
|
[32] |
Gameiro, J.; Ibeas, J. Factors affecting arteriovenous fistula dysfunction: a narrative review. J. Vasc. Access 2020, 21, 134–147.
|
[33] |
Chang, C.J.; Ko, Y.S.; Ko, P.J.; Hsu, L.A.; Chen, C.F.; Yang, C.W.; Hsu, T.S.; Pang, J.H S. Thrombosed arteriovenous fistula for hemodialysis access is characterized by a marked inflammatory activity. Kidney Int. 2005, 68, 1312–1319.
|
[34] |
Candan, F.; Yildiz, G.; Kayataş, M. Role of the VEGF 936 gene polymorphism and VEGF-A levels in the late-term arteriovenous fistula thrombosis in patients undergoing hemodialysis. Int. Urol. Nephrol. 2014, 46, 1815–1823.
|
[35] |
Yang, B.X.; Janardhanan, R.; Vohra, P.; Greene, E.L.; Bhattacharya, S.; Withers, S.; Roy, B.; Nieves Torres, E.C.; Mandrekar, J.; Leof, E.B.; Mukhopadhyay, D.; Misra, S. Adventitial transduction of lentivirus-shRNA-VEGF-A in arteriovenous fistula reduces venous stenosis formation. Kidney Int. 2014, 85, 289–306.
|
[36] |
Lee, E.S.; Shen, Q.; Pitts, R.L.; Guo, M.Z.; Wu, M.H.; Sun, S.C.; Yuan, S.Y. Serum metalloproteinases MMP-2, MMP-9, and metalloproteinase tissue inhibitors in patients are associated with arteriovenous fistula maturation. J. Vasc. Surg. 2011, 54, 454–460.
|
[37] |
Tirinescu, D.C.; Tomuleasa, C.; Pop, L.; Bondor, C.I.; Vlăduţiu, D.Ş.; Paţiu, I.M.; Rusu, C.C.; Moldovan, D.T.; Potra, A.; Kacsó, I.M. Matrix-metalloproteinase-2 predicts arteriovenous fistula failure in hemodialysis patients. Ther. Apher. Dial. 2017, 21, 586–591.
|
[38] |
Shih, Y.C.; Chen, P.Y.; Ko, T.M.; Huang, P.H.; Ma, H.; Tarng, D.C. MMP-9 deletion attenuates arteriovenous fistula neointima through reduced perioperative vascular inflammation. Int. J. Mol. Sci. 2021, 22, 5448.
|
[39] |
Reihill, J.A.; Malcomson, B.; Bertelsen, A.; Cheung, S.; Czerwiec, A.; Barsden, R.; Elborn, J.S.; Dürkop, H.; Hirsch, B.; Ennis, M.; Kelly, C.; Schock, B.C. Induction of the inflammatory regulator A20 by gibberellic acid in airway epithelial cells. Br. J. Pharmacol. 2016, 173, 778–789.
|
[40] |
Xu, H.; Shi, D.Z.; Chen, K.J.; Ma, X.C.; Li, Y.L.; Meng, L.; Yuan, W.M. Effect of Xiongshao capsule on vascular remodeling in porcine coronary balloon injury model. Chin. J. Integr. Tradit. West. Med. 2000, 6, 278–282.
|
[41] |
Chen, K.J.; Shi, D.Z.; Xu, H.; Lü, S.Z.; Li, T.C.; Ke, Y.N.; Zhang, M.Z.; Lu, X.Y.; Sun, R.Y.; You, S.J. XS0601 reduces the incidence of restenosis: a prospective study of 335 patients undergoing percutaneous coronary intervention in China. Chin. Med. J. 2006, 119, 6–13.
|
[42] |
Ngo, T.; Kim, K.; Bian, Y.Y.; Noh, H.; Lim, K.M.; Chung, J.H.; Bae, O.N. Antithrombotic effects of paeoniflorin from paeonia suffruticosa by selective inhibition on shear stress-induced platelet aggregation. Int. J. Mol. Sci. 2019, 20, 5040.
|
[43] |
Li, W.F.; Zhi, W.B.; Liu, F.; Zhao, J.M.; Yao, Q.; Niu, X.F. Paeoniflorin inhibits VSMCs proliferation and migration by arresting cell cycle and activating HO-1 through MAPKs and NF-κB pathway. Int. Immunopharmacol. 2018, 54, 103–111.
|
[44] |
Fan, X.W.; Wu, J.T.; Yang, H.T.; Yan, L.J.; Wang, S.L. Paeoniflorin blocks the proliferation of vascular smooth muscle cells induced by platelet‑derived growth factor‑BB through ROS mediated ERK1/2 and p38 signaling pathways. Mol. Med. Rep. 2017, 15, 1676–1682.
|
[45] |
Ren, J.E.; Lu, Y.F.; Qian, Y.H.; Chen, B.Z.; Wu, T.; Ji, G.A. Recent progress regarding kaempferol for the treatment of various diseases (Review). Exp. Ther. Med. 2019, 18, 2759–2776.
|
[46] |
Yao, H.; Sun, J.Y.; Wei, J.E.; Zhang, X.; Chen, B.; Lin, Y.J. Kaempferol protects blood vessels from damage induced by oxidative stress and inflammation in association with the Nrf2/HO-1 signaling pathway. Front. Pharmacol. 2020, 11, 1118.
|
[47] |
Hu, W.H.; Wang, H.Y.; Xia, Y.T.; Dai, D.K.; Xiong, Q.P.; Dong, T.T.X.; Duan, R.; Chan, G.K.L.; Qin, Q.W.; Tsim, K.W.K. Kaempferol, a major flavonoid in ginkgo folium, potentiates angiogenic functions in cultured endothelial cells by binding to vascular endothelial growth factor. Front. Pharmacol. 2020, 11, 526.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||