Journal of Chinese Pharmaceutical Sciences ›› 2024, Vol. 33 ›› Issue (1): 1-14.DOI: 10.5246/jcps.2024.01.001
• Original articles • Next Articles
Nian Wang1,2, Chenning Li2,3, Chenxi Cheng2,4, Jianzhong Chen2, Pengfei Wang2, Xun Lv2,3,*(), Xuebing Li2,3,*(
)
Received:
2023-10-25
Revised:
2023-11-13
Accepted:
2023-12-08
Online:
2024-01-31
Published:
2024-01-31
Contact:
Xun Lv, Xuebing Li
Supported by:
Supporting:
Nian Wang, Chenning Li, Chenxi Cheng, Jianzhong Chen, Pengfei Wang, Xun Lv, Xuebing Li. Design, synthesis, and biological evaluation of covalent inhibitors targeting influenza virus hemagglutinin[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(1): 1-14.
[1] |
Laver, G.; Garman, E. The origin and control of pandemic influenza. Science. 2001, 293, 1776–1777.
|
[2] |
Xu, R.; McBride, R.; Paulson, J.C.; Basler, C.F.; Wilson, I.A. Structure, receptor binding, and antigenicity of influenza virus hemagglutinins from the 1957 H2N2 pandemic. J. Virol. 2010, 84, 1715–1721.
|
[3] |
Gerdil, C. The annual production cycle for influenza vaccine. Vaccine. 2003, 21, 1776–1779.
|
[4] |
Von, I.M. The war against influenza: discovery and development of sialidase inhibitors. Nat. Rev. Drug Discov. 2007, 6, 967–974.
|
[5] |
Meijer, A.; Lackenby, A.; Hungnes, O.; Lina, B.; van der Werf, S.; Schweiger, B.; Opp, M.; Paget, J.; van de Kassteele, J.; Hay, A.; Zambon, M. Oseltamivir-resistant influenza virus A (H1N1), Europe, 2007–08 season. Emerg. Infect. Dis. 2009, 15, 552–560.
|
[6] |
Hai, R.; Schmolke, M.; Leyva-Grado, V.H.; Thangavel, R.R.; Margine, I.; Jaffe, E.L.; Krammer, F.; Solórzano, A.; García-Sastre, A.; Palese, P.; Bouvier, N.M. Influenza a (H7N9) virus gains neuraminidase inhibitor resistance without loss of in vivo virulence or transmissibility. Nat. Commun. 2013, 4, 2854.
|
[7] |
Collins, P.J.; Haire, L.F.; Lin, Y.P.; Liu, J.F.; Russell, R.J.; Walker, P.A.; Skehel, J.J.; Martin, S.R.; Hay, A.J.; Gamblin, S.J. Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature. 2008, 453, 1258–1261.
|
[8] |
Wu, Y.; Bi, Y.H.; Vavricka, C.J.; Sun, X.M.; Zhang, Y.F.; Gao, F.; Zhao, M.; Xiao, H.X.; Qin, C.F.; He, J.H.; Liu, W.J.; Yan, J.H.; Qi, J.X.; Gao, G.F. Characterization of two distinct neuraminidases from avian-origin human-infecting H7N9 influenza viruses. Cell Res. 2013, 23, 1347–1355.
|
[9] |
Das, K.; Aramini, J.M.; Ma, L.C.; Krug, R.M.; Arnold, E. Structures of influenza A proteins and insights into antiviral drug targets. Nat. Struct. Mol. Biol. 2010, 17, 530–538.
|
[10] |
Sigal, G.B.; Mammen, M.; Dahmann, G.; Whitesides, G.M. Polyacrylamides bearing pendant α-sialoside groups strongly inhibit agglutination of erythrocytes by influenza virus: the strong inhibition reflects enhanced binding through cooperative polyvalent interactions. J. Am. Chem. Soc. 1996, 118, 3789–3800.
|
[11] |
Lee, Y.C.; Lee, R.T. Carbohydrate-protein interactions: basis of glycobiology. Acc. Chem. Res. 1995, 28, 321–327.
|
[12] |
Marra, A.; Moni, L.S.; Pazzi, D.; Corallini, A.; Bridi, D.; Dondoni, A. Synthesis of sialoclusters appended to calix [4] arene platforms via multiple azide-alkyne cycloaddition. New inhibitors of hemagglutination and cytopathic effect mediated by BK and influenza A viruses. Org. Biomol. Chem. 2008, 6, 1396–1409.
|
[13] |
Collins, B.E.; Paulson, J.C. Cell surface biology mediated by low affinity multivalent protein-glycan interactions. Curr. Opin. Chem. Biol. 2004, 8, 617–625.
|
[14] |
Lundquist, J.J.; Toone, E.J. The cluster glycoside effect. Chem. Rev. 2002, 102, 555–578.
|
[15] |
Oka, H.; Onaga, T.; Koyama, T.; Guo, C.T.; Suzuki, Y.; Esumi, Y.; Hatano, K.; Terunuma, D.; Matsuoka, K. Sialyl α (2 → 3) lactose clusters using carbosilane dendrimer core scaffolds as influenza hemagglutinin blockers. Bioorg. Med. Chem. Lett. 2008, 18, 4405–4408.
|
[16] |
Umemura, M.; Makimura, Y.; Itoh, M.; Yamamoto, T.; Mine, T.; Mitani, S.; Simizu, I.; Ashida, H.; Yamamoto, K. One-step synthesis of efficient binding-inhibitor for influenza virus through multiple addition of sialyloligosaccharides on chitosan. Carbohydr. Polym. 2010, 81, 330–334.
|
[17] |
Bauer, R.A. Covalent inhibitors in drug discovery: from accidental discoveries to avoided liabilities and designed therapies. Drug Discov. Today 2015, 20, 1061–1073.
|
[18] |
Liu, J.F.; Stevens, D.J.; Haire, L.F.; Walker, P.A.; Coombs, P.J.; Russell, R.J.; Gamblin, S.J.; Skehel, J.J. Structures of receptor complexes formed by hemagglutinins from the Asian Influenza pandemic of 1957. Proc. Natl. Acad. Sci. USA. 2009, 106, 17175–17180.
|
[19] |
Tzarum, N.; de Vries, R.P.; Peng, W.J.; Thompson, A.J.; Bouwman, K.M.; McBride, R.; Yu, W.L.; Zhu, X.Y.; Verheije, M.H.; Paulson, J.C.; Wilson, I.A. The 150-loop restricts the host specificity of human H10N8 influenza virus. Cell Rep. 2017, 19, 235–245.
|
[20] |
Tzarum, N.; de Vries, R.P.; Zhu, X.Y.; Yu, W.L.; McBride, R.; Paulson, J.C.; Wilson, I.A. Structure and receptor binding of the hemagglutinin from a human H6N1 influenza virus. Cell Host Microbe. 2015, 17, 369–376.
|
[21] |
Xu, R.; de Vries, R.P.; Zhu, X.Y.; Nycholat, C.M.; McBride, R.; Yu, W.L.; Paulson, J.C.; Wilson, I.A. Preferential recognition of avian-like receptors in human influenza A H7N9 viruses. Science. 2013, 342, 1230–1235.
|
[22] |
Dalton, S.E.; Dittus, L.; Thomas, D.A.; Convery, M.A.; Nunes, J.; Bush, J.T.; Evans, J.P.; Werner, T.; Bantscheff, M.; Murphy, J.A.; Campos, S. Selectively targeting the kinome-conserved lysine of PI3Kδ as a general approach to covalent kinase inhibition. J. Am. Chem. Soc. 2018, 140, 932–939.
|
[23] |
Choi, S.; Connelly, S.; Reixach, N.; Wilson, I.A.; Kelly, J.W. Chemoselective small molecules that covalently modify one lysine in a non-enzyme protein in plasma. Nat. Chem. Biol. 2010, 6, 133–139.
|
[24] |
Akçay, G.; Belmonte, M.A.; Aquila, B.; Chuaqui, C.; Hird, A.W.; Lamb, M.L.; Rawlins, P.B.; Su, N.; Tentarelli, S.; Grimster, N.P.; Su, Q.B. Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain. Nat. Chem. Biol. 2016, 12, 931–936.
|
[25] |
Pineux, F.; Federico, S.; Klotz, K.N.; Kachler, S.; Michiels, C.; Sturlese, M.; Prato, M.; Spalluto, G.; Moro, S.; Bonifazi, D. Targeting G protein-coupled receptors with magnetic carbon nanotubes: the case of the A3 adenosine receptor. ChemMedChem. 2020, 15, 1909–1920.
|
[26] |
Gavrilyuk, J.I.; Wuellner, U.; Barbas, C.F. β-Lactam-based approach for the chemical programming of aldolase antibody 38C2. Bioorg. Med. Chem. Lett. 2009, 19, 1421–1424.
|
[27] |
Spiegel, D.; Parker, C. U.S. Patent 20120269766A1. 2012.
|
[28] |
Ribeiro, J.; Pau, W.; Pifferi, C.; Renaudet, O.; Varrot, A.; Mahal, L.; Imberty, A. Characterization of a high-affinity sialic acid-specific CBM40 from Clostridium perfringens and engineering of a divalent form. Biochem. J. 2016, 473, 2109–2118.
|
[29] |
Wei, J.H.; Zheng, L.T.; Lv, X.; Bi, Y.H.; Chen, W.W.; Zhang, W.; Shi, Y.; Zhao, L.; Sun, X.M.; Wang, F.; Cheng, S.H.; Yan, J.H.; Liu, W.J.; Jiang, X.Y.; Gao, G.F.; Li, X.B. Analysis of influenza virus receptor specificity using glycan-functionalized gold nanoparticles. ACS Nano. 2014, 8, 4600–4607.
|
[30] |
Lv, X.; Wang, P.F.; Li, C.N.; Cheng, S.H.; Bi, Y.H.; Li, X.B. Zanamivir-cholesterol conjugate: a long-acting neuraminidase inhibitor with potent efficacy against drug-resistant influenza viruses. J. Med. Chem. 2021, 64, 1740.
|
[1] | Xiaowei Chi, Qi Li, Yi Zhong, Tong Gong, Chuxiao Yi, Liangren Zhang, Zhenming Liu. Discovery of potential xanthine oxidase inhibitors based on virtual screening [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(8): 626-635. |
[2] | Yuxia Zhu, Lingjian Zhang, Yiming Hu, Weihua Liu, Liping Guan, Lin Lin. Study on synthesis of naringenin derivatives and cholinesterase inhibitory activity in marine Chinese medicine [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(8): 636-644. |
[3] | Chonghao Wu, Panjie Huang, Chunqi Yang, Chuan Gao, Ming Zeng. The efficacy and safety of immune checkpoint inhibitors in malignant pleural mesothelioma: A systematic review [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 291-301. |
[4] | Kai Li, Bingjie Tang, Xinlong Chai, Yang Ping, Lihong Wang, Jin Su. Sialic acid-functionalized targeted drug delivery systems: advances in tumor and inflammation therapy by binding to Siglecs or selectin receptors [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(10): 773-795. |
[5] | Ying Fu, Simo Liu, Yan Ma, Nannan Wu. Canagliflozin, an inhibitor of sodium-glucose co-transporter 2, advances in the treatment of type 2 diabetes [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(8): 569-588. |
[6] | Wenbin Liu, Dong Liu, Xue Wang, Zhaoliang Yang, Yun He, Yang Yang. Oseltamivir decorated gold nanorods for visible rapid detection of influenza virus [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(7): 491-498. |
[7] | Aris Stiawan, Eti Nurwening Sholikhah, Yehezkiel Steven Kurniawan, Yoga Priastomo, Jumina. Synthesis, cytotoxicity assay, and molecular docking study of hydroxychalcone derivatives as potential tyrosinase inhibitors [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(8): 634-644. |
[8] | Chunxing Li, Yuanmin Zhu, Hua Liu, Zhao Xu. Efficacy of prokinetic drugs in combination with proton pump inhibitors versus proton pump inhibitors alone in the treatment of gastroesophageal reflux disease: a meta-analysis [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(4): 347-356. |
[9] | Jing Zhou, Hong Zhang, Xiaojiao Li, Xiangshi Song, Mengmeng Zhang, Yanhua Ding. Analysis of the effect of HCV resistance-associated substitutions on the short-term efficacy of DAA after single administration in three phase Ib clinical trials [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(2): 133-145. |
[10] | State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center. The group of Professor Xiaoda Yang has made important progress in protein phosphatase inhibitors based on vanadium active groups [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(11): 932-933. |
[11] | State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center. The group of Professor Xinjing Tang has made progress in the study of cyclic antisense oligonucleotides as microRNA inhibitors [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(10): 855-856. |
[12] | Peili Jiao, Yiyan Li, Xing Wu, Yuxi Wang, Beibei Mao, Hongwei Jin, Lihe Zhang, Liangren Zhang, Zhenming Liu. Structure-based design and biological evaluation of novel mTOR inhibitors as potential anti-cervical agents [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(9): 603-616. |
[13] | Yurui Jin, Aixiu Li, Jiaxiong Kang. Insights from investigating the interactions of natural product inhibitors with neuraminidase of the 2009 H1N1 influenza virus [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(6): 390-397. |
[14] | Jiapei Yu, Yan Niu, Qi Sun, Fengrong Xu, Lei Liang, Chao Wang, Ping Xu. Design and synthesis of 2-aminobenzimidazoles as potential BACE1 inhibitors [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(9): 650-659. |
[15] | Yuping Wang, Xiaowei Zhu, Jian Xin, Yanyan Guo, Xiangnan Xu, Yuheng Ma. Research progress of synthetic lactacystin and its analogs as β-lactone proteasome inhibitors [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(7): 467-478. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||