Journal of Chinese Pharmaceutical Sciences ›› 2023, Vol. 32 ›› Issue (5): 360-378.DOI: 10.5246/jcps.2023.05.031
• Original articles • Previous Articles Next Articles
Shuang Li1,4, Minggang Dong2,*(), Chunyan Guo1,3,*(), Shuangshuang Li1, Sihan You1, Ye Wan1, Xinxing Liu4
Received:
2022-12-14
Revised:
2023-01-10
Accepted:
2023-01-25
Online:
2023-06-02
Published:
2023-06-02
Contact:
Minggang Dong, Chunyan Guo
Supporting:
Shuang Li, Minggang Dong, Chunyan Guo, Shuangshuang Li, Sihan You, Ye Wan, Xinxing Liu. Taohong Siwu dispensing granules alleviate rotenone-induced SH-SY5Y cellular cytotoxicity by rescuing mitochondrial dysfunction and amino acid metabolism disarrangements[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 360-378.
[1] |
Chiu, C.C.; Yeh, T.H.; Lu, C.S.; Huang, Y.C.; Cheng, Y.C.; Huang, Y.Z.; Weng, Y.H.; Liu, Y.C.; Lai, S.C.; Chen, Y.L.; Chen, Y.J.; Chen, C.L.; Chen, H.Y.; Lin, Y.W.; Wang, H.L. PARK14 PLA2G6 mutants are defective in preventing rotenone-induced mitochondrial dysfunction, ROS generation and activation of mitochondrial apoptotic pathway. Oncotarget. 2017, 8, 79046–79060.
|
[2] |
Zhou, J.X.; Zhang, Y.; Li, S.Y.; Zhou, Q.; Lu, X.F.; Shi, J.S.; Liu, J.; Wu, Q.; Zhou, S.Y. Dendrobium nobile Lindl. alkaloids-mediated protection against CCl4-induced liver mitochondrial oxidative damage is dependent on the activation of Nrf2 signaling pathway. Biomed. Pharmacother. 2020, 129, 110351.
|
[3] |
Parkinson, J. An essay on the shaking palsy. 1817. J. Neuropsychiatry Clin. Neurosci. 2002, 14, 223–236, 222.
|
[4] |
Zhang, Y.; Wang, J.; Zuo, C.; Chen, W.; Zhu, Q.; Guo, D.; Wu, H.; Wang, H.; Peng, D.; Han, L. Protective effect of Taohong siwu decoction on abnormal uterine bleeding induced by incomplete medical abortion in rats during early pregnancy. Chem. Pharm. Bull. Tokyo. 2018, 66, 708–713.
|
[5] |
Liu, L.; Duan, J.A.; Su, S.L.; Liu, P.; Tang, Y.P.; Qian, D.W. Siwu series decoctions for treating primary dysmenorrea of gynecology blood stasis syndrome: research progress of Taohong Siwu decoction. China J. Chin. Materia Medica. 2015, 40, 814–821.
|
[6] |
Zheng, C.S.; Xu, X.J.; Ye, H.Z.; Wu, G.W.; Li, X.H.; Xu, H.F.; Liu, X.X. Network pharmacology-based prediction of the multi-target capabilities of the compounds in Taohong Siwu Decoction, and their application in osteoarthritis. Exp. Ther. Med. 2013, 6, 125–132.
|
[7] |
Luo, Z.R.; Li, H.; Xiao, Z.X.; Shao, S.J.; Zhao, T.T.; Zhao, Y.; Mou, F.F.; Yu, B.; Guo, H.D. Taohong siwu decoction exerts a beneficial effect on cardiac function by possibly improving the microenvironment and decreasing mitochondrial fission after myocardial infarction. Cardiol. Res. Pract. 2019, 2019, 5198278.
|
[8] |
Zhou, J.; Yang, D.; Zhou, S.H.; Wang, J.P.; Liu, Y.S.; Wang, S.L. Clinical efficacy and safety of bathing with Chinese medicine Taohong siwu decoction for treatment of diffuse cutaneous systemic sclerosis: a randomized placebo-controlled trial. Chin. J. Integr. Med. 2018, 24, 185–192.
|
[9] |
Tao, T.; He, T.; Mao, H.; Wu, X.; Liu, X. Non-targeted metabolomic profiling of coronary heart disease patients with Taohong siwu decoction treatment. Pharmacol. 2020, 11, 651.
|
[10] |
Chen, G.; Xie, Y.; Liu, Y.; Jin, S.; Chen, Z.; Zhang, P.; Shi, P.; Zhu, J.; Deng, J.; Liang, H.; Zhou, C. Taohong Siwu Decoction for femoral head necrosis: a protocol for systematic review. Med. Baltim. 2020, 99, e19368.
|
[11] |
Liu, T.H.; Chen, W.H.; Chen, X.D.; Liang, Q.E.; Tao, W.C.; Jin, Z.; Xiao, Y.; Chen, L.G. Network pharmacology identifies the mechanisms of action of TaohongSiwu Decoction against essential hypertension. Med. Sci. Monit. 2020, 26, e920682.
|
[12] |
Duan, X.; Pan, L.; Bao, Q.; Peng, D. UPLC-Q-TOF-MS study of the mechanism of THSWD for breast cancer treatment. Pharmacol. 2019, 10, 1625.
|
[13] |
Li, L.; Yang, N.; Nin, L.; Zhao, Z.; Chen, L.; Yu, J.; Jiang, Z.; Zhong, Z.; Zeng, D.; Qi, H.; Xu, X. Chinese herbal medicine formula Tao Hong si wu decoction protects against cerebral ischemia-reperfusion injury via PI3K/Akt and the Nrf2 signaling pathway. J. Nat. Med. 2015, 69, 76–85.
|
[14] |
Zhang, X.; Du, L.D.; Zhang, W.; Yang, Y.L.; Zhou, Q.M.; Du, G.H. Therapeutic effects of baicalein on rotenone-induced Parkinson’s disease through protecting mitochondrial function and biogenesis. Sci. Rep. 2017, 7, 9968.
|
[15] |
Tatulli, G.; Mitro, N.; Cannata, S.M.; Audano, M.; Caruso, D.; D’Arcangelo, G.; Lettieri-Barbato, D.; Aquilano, K. Intermittent fasting applied in combination with rotenone treatment exacerbates dopamine neurons degeneration in mice. Front. Cell Neurosci. 2018, 12, 4.
|
[16] |
Yu, T.; Zhen, M.; Li, J.; Zhou, Y.; Ma, H.; Jia, W.; Wang, C. Anti-apoptosis effect of amino acid modified gadofullerene via a mitochondria mediated pathway. Dalton Trans. Camb. Engl. 2019, 48, 7884–7890.
|
[17] |
Kim, H.; Perentis, R.J.; Caldwell, G.A.; Caldwell, K.A. Gene-by-environment interactions that disrupt mitochondrial homeostasis cause neurodegeneration in C. elegans Parkinson’s models. Cell Death Dis. 2018, 9, 555.
|
[18] |
Papada, E.; Forbes, A.; Amerikanou, C.; Torović, L.; Kalogeropoulos, N.; Tzavara, C.; Triantafillidis, J.K.; Kaliora, A.C. Antioxidative efficacy of a pistacia lentiscus supplement and its effect on the plasma amino acid profile in inflammatory bowel disease: a randomised, double-blind, placebo-controlled trial. Nutrients. 2018, 10, E1779.
|
[19] |
Martis, R.M.; Knight, L.J.; Donaldson, P.J.; Lim, J.C. Identification, expression, and roles of the cystine/glutamate antiporter in ocular tissues. Oxid. Med. Cell Longev. 2020, 2020, 4594606.
|
[20] |
Michel, M.; Dubowy, K.O.; Entenmann, A.; Karall, D.; Adam, M.G.; Zlamy, M.; Odri Komazec, I.; Geiger, R.; Niederwanger, C.; Salvador, C.; Müller, U.; Laser, K.T.; Scholl-Bürgi, S. Targeted metabolomic analysis of serum amino acids in the adult Fontan patient with a dominant left ventricle. Sci. Rep. 2020, 10, 8930.
|
[21] |
Wang, M.; Gui, X.; Wu, L.; Tian, S.; Wang, H.; Xie, L.; Wu, W. Amino acid metabolism, lipid metabolism, and oxidative stress are associated with post-stroke depression: a metabonomics study. BMC Neurol. 2020, 20, 250.
|
[22] |
Kim, S.H.; Kim, K.Y.; Park, S.G.; Yu, S.N.; Kim, Y.W.; Nam, H.W.; An, H.H.; Kim, Y.W.; Ahn, S.C. Mitochondrial ROS activates ERK/autophagy pathway as a protected mechanism against deoxypodophyllotoxin-induced apoptosis. Oncotarget. 2017, 8, 111581–111596.
|
[23] |
Figura, M.; Kuśmierska, K.; Bucior, E.; Szlufik, S.; Koziorowski, D.; Jamrozik, Z.; Janik, P. Serum amino acid profile in patients with Parkinson’s disease. PLoS One. 2018, 13, e0191670.
|
[24] |
Pasini, E.; Corsetti, G.; Aquilani, R.; Romano, C.; Picca, A.; Calvani, R.; Dioguardi, F. Protein-amino acid metabolism disarrangements: the hidden enemy of chronic age-related conditions. Nutrients. 2018, 10, 391.
|
[25] |
Hopkins, A.L. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690.
|
[26] |
Gao, L.; Wang, K.X.; Zhou, Y.Z.; Fang, J.S.; Qin, X.M.; Du, G.H. Uncovering the anticancer mechanism of Compound Kushen Injection against HCC by integrating quantitative analysis, network analysis and experimental validation. Sci. Rep. 2018, 8, 624.
|
[27] |
Du, X.Y.; Xie, X.X.; Liu, R.T. The role of α-synuclein oligomers in Parkinson's disease. Int. J. Mol. Sci. 2020, 21, E8645.
|
[28] |
Zhao, J.; Yu, S.; Zheng, Y.; Yang, H.; Zhang, J. Oxidative modification and its implications for the neurodegeneration of Parkinson’s disease. Mol. Neurobiol. 2017, 54, 1404–1418.
|
[29] |
Zhu, Z.; Yang, C.; Iyaswamy, A.; Krishnamoorthi, S.; Sreenivasmurthy, S.G.; Liu, J.; Wang, Z.; Tong, B.C.; Song, J.; Lu, J.; Cheung, K.H.; Li, M. Balancing mTOR signaling and autophagy in the treatment of Parkinson’s disease. Int. J. Mol. Sci. 2019, 20, E728.
|
[30] |
Rocha, E.M.; De, M.B.; Sanders, L.H. Alpha-synuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol. Dis. 2018, 109, 249–257.
|
[31] |
Iovino, L.; Tremblay, M.E.; Civiero, L. Glutamate-induced excitotoxicity in Parkinson’s disease: the role of glial cells. J. Pharmacol. Sci. 2020, 144, 151–164.
|
[32] |
Bastiaan, R.B.; Michael, S.O.; Christine, K. Parkinson’s disease. Lancet. 2021, 397, 2284–2303.
|
[33] |
Espay, A.J.; Morgante, F.; Merola, A.; Fasano, A.; Marsili, L.; Fox, S.H.; Bezard, E.; Picconi, B.; Calabresi, P.; Lang, A.E. Levodopa-induced dyskinesia in Parkinson disease: current and evolving concepts. Ann Neurol. 2018, 84, 797–811.
|
[34] |
Baig, F.; Kelly, M.J.; Lawton, M.A.; Ruffmann, C.; Rolinski, M.; Klein, J.C.; Barber, T.; Lo, C.; Ben-Shlomo, Y.; Okai, D.; Hu, M.T. Impulse control disorders in Parkinson disease and RBD: a longitudinal study of severity. Neurology. 2019, 93, e675–e687.
|
[35] |
Pahwa, R.; Tanner, C.M.; Hauser, R.A.; Isaacson, S.H.; Nausieda, P.A.; Truong, D.D.; Agarwal, P.; Hull, K.L.; Lyons, K.E.; Johnson, R.; Stempien, M.J. ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in parkinson disease (EASE LID study): a randomized clinical trial. J. Park. Dis. 2017, 74, 941–949.
|
[36] |
Klaus, S.; Chaudhuri, K.R.; Miguel, C.; Susan, H.F.; Regina, K.; Santiago, P.L.; Daniel, W.; Cristina, S. Update on treatments for nonmotor symptoms of Parkinson’s disease-an evidence-based medicine review. Movement disorders: Official Journal of The Movement Disorder Society. 2019, 34, 180–198.
|
[37] |
Li, S.; Le, W. Parkinson’s disease in traditional Chinese medicine. Lancet Neurol. 2021, 20, 262.
|
[38] |
Dalangin, R.; Kim, A.; Campbell, R.E. The role of amino acids in neurotransmission and fluorescent tools for their detection. Int. J. Mol. Sci. 2020, 21, E6197.
|
[39] |
Li, X.; Wang, W.; Yan, J.; Zeng, F. Glutamic acid transporters: targets for neuroprotective therapies in Parkinson’s disease. Front. Neurosci. 2021, 15, 678154.
|
[40] |
Giffard, R.G.; Xu, L.; Zhao, H.; Carrico, W.; Ouyang, Y.; Qiao, Y.; Sapolsky, R.; Steinberg, G.; Hu, B.; Yenari, M.A. Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury. J. Exp. Biol. 2004, 207, 3213–3220.
|
[41] |
Zhang, Q.; Gao, Y.; Zhang, J.; Li, Y.; Chen, J.; Huang, R.; Ma, G.; Wang, L.; Zhang, Y.; Nie, K.; Wang, L. L-asparaginase exerts neuroprotective effects in an SH-SY5Y-A53T model of Parkinson’s disease by regulating glutamine metabolism. Front. Mol. Neurosci. 2020, 13, 563054.
|
[42] |
Yuan, S.; Zhang, Z.W.; Li, Z.L. Cell death-autophagy loop and glutamate-glutamine cycle in amyotrophic lateral sclerosis. Front. Mol. Neurosci. 2017, 10, 231.
|
[43] |
Park, H.; Kim, J.E. Deletion of P2X7 receptor decreases basal glutathione level by changing glutamate-glutamine cycle and neutral amino acid transporters. Cells. 2020, 9, E995.
|
[44] |
Raj, A.; Kaushal, A.; Datta, I. Impact of monomeric and aggregated wild-type and A30P/A53T double-mutant α-synuclein on antioxidant mechanism and glutamate metabolic profile of cultured astrocytes. J. Neurosci. Res. 2022, 100, 681–706.
|
[45] |
Huang, S.Q.; Wan, J.Y.; Du, T.T.; Gong, T.; Zhang, J.; Jiang, X.H. The relationship between the contents of 13 amino acids in brain tissues and the progression of NAFLD via C57BL/6 model mice. J. Chin. Pharm. Sci. 2022, 31, 441.
|
[46] |
Havelund, J.F.; Heegaard, N.H.H.; Færgeman, N.J.K.; Gramsbergen, J.B. Biomarker research in Parkinson’s disease using metabolite profiling. Metabolites. 2017, 7, E42.
|
[47] |
Backe, M.B.; Jin, C.Y.; Andreone, L.; Sankar, A.; Agger, K.; Helin, K.; Madsen, A.N.; Poulsen, S.S.; Bysani, M.; Bacos, K.; Ling, C.; Perone, M.J.; Holst, B.; Mandrup-Poulsen, T. The lysine demethylase KDM5B regulates islet function and glucose homeostasis. J. Diabetes Res. 2019, 2019, 1–15.
|
[48] |
Komaniecki, G.; Lin, H. Lysine fatty acylation: regulatory enzymes, research tools, and biological function. Front. Cell Dev. Biol. 2021, 9, 717503.
|
[49] |
Zhao, D.L.; Shen, D.W.; Chi, Y.T.; Liu, F.; Zou, L.B.; Zhu, H.B. Liriodendrin protects SH-SY5Y cells from dopamine-induced cytotoxicity. J. Chin. Pharm. Sci. 2007, 294–299.
|
[1] | Suqiong Huang, Jingyuan Wan, Tingting Du, Tao Gong, Jing Zhang, Xinhui Jiang. The relationship between the contents of 13 amino acids in brain tissues and the progression of NAFLD via C57BL/6 model mice [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(6): 441-451. |
[2] | Shiqi Xu, Liyan Zhu, Chao Hao, Wenqian Liu, Chenglong Chen, Yongyi Chen, Aiqin Liu. Synthesis of a novel series of amino acid prodrugs based on tegafur and evaluation of their antitumor activity [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(9): 743-753. |
[3] | State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center. The group of Professor Tao Liu has published noncanonical amino acids (ncAAs)-triggered therapeutic switch on Nature Chemical Biology [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(11): 937-938. |
[4] | Jocelyn A. Odusami, Monisola I. Ikhile, Marthe C. D. Fotsing, Idris A. Olasupo, Josephat U. Izunobi, Elizabeth O. Bamgbade, Thierry Y. Fonkui. Towards eradicating antibiotic-resistant bacteria: synthesis and antibacterial activities of substituted N-(2-nitrophenyl)pyrrolidine- and piperidine-2-carboxylic acids [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(10): 704-715. |
[5] | Yajuan Shi, Qinghua Guan, Yanfen Wu, Chao Wang. Synthesis of the arsenic-containing amino-acids, and their potential applications in peptide chemistry [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(5): 372-378. |
[6] | Mengmeng Wang, Wangchun Du, Jie Shen*, Yi Dong, Wenshi Wei, Zhongjuan Song . Determination of amino acid neurotransmitters in mouse brain tissue using high-performance liquid chromatography with fluorescence detection [J]. , 2013, 22(3): 239-243. |
[7] | Li Lv, Jiang Wang, Xiao Ding1, Daizong Lin1, Linxiang Zhao2, Hualiang Jiang, Hong Liu* . Synthesis of α-substituted β-amino acids via the Ni(II) complex through the Suzuki coupling reaction [J]. , 2012, 21(6): 561-568. |
[8] | Gang Li, Yu-Peng Liu, Meng Lei, Xin Wang*, Tie-Ming Cheng, Run-Tao Li* . Efficient synthesis of thiohydantoin derivatives from amino acid esters and isothiocyanates in alkaline Al2O3 [J]. , 2012, 21(2): 136-141. |
[9] | Xin Zhao, Xin Wang, Ke-Fu Yu, Yu Duan, Jie-Si Li, Bing-Xiang Zhao, Xuan Zhang*, Qiang Zhang. Effects of dichloroacetate on the activation of the mitochondrial pathway in C6 cells in vitro [J]. , 2011, 20(5): 460-465. |
[10] | Ying Yang, Chao Wang* . Synthesis of functional amino acids bearing 1,3-dithiane modification [J]. , 2011, 20(2): 195-198. |
[11] | Yan-Li Miao, Fu-Yong Fang, Wen-Dong Song*. Analysis of the chemical compositions of Hirudinaria manillensis [J]. , 2007, 16(3): 223-226. |
[12] | FANG Ya-nan, LIN Mao, LIU Geng-tao* . Inhibitory Effect of Isorhapontigenin on Copper-Mediated Peroxidation of Human Low-Density Lipoprotein in vitro [J]. , 2004, 13(1): 63-67. |
[13] | Jian-Tu Che, Jun-Tian Zhang, Fei-Song Chen, Zhi-Wei Qu. Protective Effect of Tetrandrine against Excitatory Amino Acids induced Neuronal Injury in Cortical Culture [J]. , 1997, 6(3): 143-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||