Journal of Chinese Pharmaceutical Sciences ›› 2023, Vol. 32 ›› Issue (3): 165-179.DOI: 10.5246/jcps.2023.03.014
• Original articles • Next Articles
Meiqi Gao1, Jiali Wu1, Wenjing Zhu1, Xiaotong Zhang1, Wenling Fan1,2,*()
Received:
2022-10-09
Revised:
2022-11-16
Accepted:
2022-12-10
Online:
2023-03-31
Published:
2023-03-30
Contact:
Wenling Fan
Supporting:
Meiqi Gao, Jiali Wu, Wenjing Zhu, Xiaotong Zhang, Wenling Fan. The preparation and characterization of sustained-release solid dispersion of resveratrol by hot-melt extrusion technology[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(3): 165-179.
[1] |
Zhu, Y.Z.; Wu, W.J.; Zhu, Q.; Liu, X.H. Discovery of Leonuri and therapeutical applications: from bench to bedside. Pharmacol. Ther. 2018, 188, 26–35.
|
[2] |
Dong, X.; Zeng, Y.; Liu, Y.; You, L.; Yin, X.; Fu, J.; Ni, J. Aloe-emodin: a review of its pharmacology, toxicity, and pharmacokinetics. Phytother. Res. 2020, 34, 270–281.
|
[3] |
Jardim, F.R.; de Rossi, F.T.; Nascimento, M.X.; da Silva Barros, R.G.; Borges, P.A.; Prescilio, I.C.; de Oliveira, M.R. Resveratrol and brain mitochondria: a review. Mol. Neurobiol. 2018, 55, 2085–2101.
|
[4] |
Xia, N.; Daiber, A.; Förstermann, U.; Li, H. Antioxidant effects of resveratrol in the cardiovascular system. Br. J. Pharmacol. 2017, 174, 1633–1646.
|
[5] |
Li, W.; Quan, P.; Zhang, Y.Q.; Cheng, J.; Liu, J.; Cun, D.M.; Xiang, R.W.; Fang, L. Influence of drug physicochemical properties on absorption of water insoluble drug nanosuspensions. Int. J. Pharm. 2014, 460, 13–23.
|
[6] |
Vasconcelos, T.; Marques, S.; das Neves, J.; Sarmento, B. Amorphous solid dispersions: rational selection of a manufacturing process. Adv. Drug Deliv. Rev. 2016, 100, 85–101.
|
[7] |
Nivelle, L.; Hubert, J.; Courot, E.; Jeandet, P.; Aziz, A.; Nuzillard, J.M.; Renault, J.H.; Clément, C.; Martiny, L.; Delmas, D.; Tarpin, M. Anti-cancer activity of resveratrol and derivatives produced by grapevine cell suspensions in a 14 L stirred bioreactor. Molecules. 2017, 22, 474.
|
[8] |
Wang, W.; Zhang, L.; Chen, T.; Guo, W.; Bao, X.; Wang, D.; Ren, B.; Wang, H.; Li, Y.; Wang, Y.; Chen, S.; Tang, B.; Yang, Q.; Chen, C. Anticancer effects of resveratrol-loaded solid lipid nanoparticles on human breast cancer cells. Molecules. 2017, 22, E1814.
|
[9] |
Tran, P.; Park, J.S. Application of supercritical fluid technology for solid dispersion to enhance solubility and bioavailability of poorly water-soluble drugs. Int. J. Pharm. 2021, 610, 121247.
|
[10] |
Mori, Y.; Motoyama, K.; Ishida, M.; Onodera, R.; Higashi, T.; Arima, H. Theoretical and practical evaluation of lowly hydrolyzed polyvinyl alcohol as a potential carrier for hot-melt extrusion. Int. J. Pharm. 2019, 555, 124–134.
|
[11] |
Chowdhury, N.; Vhora, I.; Patel, K.; Bagde, A.; Kutlehria, S.; Singh, M. Development of hot melt extruded solid dispersion of tamoxifen citrate and resveratrol for synergistic effects on breast cancer cells. AAPS Pharmscitech. 2018, 19, 3287–3297.
|
[12] |
Repka, M.A.; Bandari, S.; Kallakunta, V.R.; Vo, A.Q.; McFall, H.; Pimparade, M.B.; Bhagurkar, A.M. Melt extrusion with poorly soluble drugs – An integrated review. Int. J. Pharm. 2018, 535, 68–85.
|
[13] |
Shah, S.; Maddineni, S.; Lu, J.; Repka, M.A. Melt extrusion with poorly soluble drugs. Int. J. Pharm. 2013, 453, 233–252.
|
[14] |
Palazi, E.; Karavas, E.; Barmpalexis, P.; Kostoglou, M.; Nanaki, S.; Christodoulou, E.; Bikiaris, D.N. Melt extrusion process for adjusting drug release of poorly water soluble drug felodipine using different polymer matrices. Eur. J. Pharm. Sci. 2018, 114, 332–345.
|
[15] |
Lakshman, J.P.; Cao, Y.; Kowalski, J.; Serajuddin, A.T. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug. Mol. Pharm. 2008, 5, 994–1002.
|
[16] |
Bennett, R.C.; Brough, C.; Miller, D.A.; O’Donnell, K.P.; Keen, J.M.; Hughey, J.R.; Williams, R.O.; McGinity, J.W. Preparation of amorphous solid dispersions by rotary evaporation and KinetiSol Dispersing: approaches to enhance solubility of a poorly water-soluble gum extract. Drug Dev. Ind. Pharm. 2015, 41, 382–397.
|
[17] |
Feng, C.L.; Ding, Y.Y.; Li, W.J.; Yu, J.Y.; Xu, X.M. Preparation of fisetin solid dispersions. Chin. Tradit. Pat. Med. 2017, 39, 2503–2507.
|
[18] |
Zhu, W.; Fan, W.; Zhang, X.; Gao, M. Sustained-release solid dispersion of high-melting-point and insoluble resveratrol prepared through hot melt extrusion to improve its solubility and bioavailability. Mol. Basel Switz. 2021, 26, 4982.
|
[19] |
Salem, A.; Nagy, S.; Pál, S.; Széchenyi, A. Reliability of the Hansen solubility parameters as co-crystal formation prediction tool. Int. J. Pharm. 2019, 558, 319–327.
|
[20] |
Greenhalgh, D.J.; Williams, A.C.; Timmins, P.; York, P. Solubility parameters as predictors of miscibility in solid dispersions. J. Pharm. Sci. 1999, 88, 1182–1190.
|
[21] |
Hansen, C.M. 50 Years with solubility parameters—past and future. Prog. Org. Coat. 2004, 51, 77–84.
|
[22] |
Venkatram, S.; Kim, C.; Chandrasekaran, A.; Ramprasad, R. Critical assessment of the hildebrand and Hansen solubility parameters for polymers. J. Chem. Inf. Modeling. 2019, 59, 4188–4194.
|
[23] |
Kumar, S.; Lather, V.; Pandita, D. Stability indicating simplified HPLC method for simultaneous analysis of resveratrol and quercetin in nanoparticles and human plasma. Food Chem. 2016, 197, 959–964.
|
[24] |
Liu, H.; Du, K.; Li, D.; Du, Y.; Xi, J.; Xu, Y.; Shen, Y.; Jiang, T.; Webster, T.J. A high bioavailability and sustained-release nano-delivery system for nintedanib based on electrospray technology. Int J. Nanomed. 2018, 13, 8379–8393.
|
[25] |
Qiao, J.H.; Guo, J.P.; Ma, Y.; Piao, M.G. Preparation and characterization of atorvastatin calcium poloxamer 188 solid dispersion. China Pharm. 2015, 26, 103–106.
|
[26] |
Liu, S.F. Preparation of endragit RL/RS encapsulated flurbiprofen solid dispersion. J. Pharm. Res. 2014, 33, 155–157, 161.
|
[27] |
Corsaro, C.; Neri, G.; Mezzasalma, A.M.; Fazio, E. Weibull modeling of controlled drug release from Ag-PMA nanosystems. Polymers. 2021, 13, 2897.
|
[28] |
Balata, G.F.; Essa, E.A.; Shamardl, H.A.; Zaidan, S.H.; Abourehab, M.A. Self-emulsifying drug delivery systems as a tool to improve solubility and bioavailability of resveratrol. Drug Des. Dev. Ther. 2016, 10, 117–128.
|
[1] | Baiyang Jiang, Lingqi Qiu, Jinrong liu, Hanxuan Wang, Suwei Dong. Synthetic studies toward resveratrol-based natural products polynapstilbenes A and B [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(9): 595-604. |
[2] | Yajie Yin, Xiaofei Zhang, Zheng Cui, Wei Qu, Bing He, Wenbing Dai, Hua Zhang, Xueqing Wang, Qiang Zhang. In vitro dissolution and oral bioavailability study of fenofibrate nanomatrix system prepared by hot-melt extrusion [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(5): 329-338. |
[3] | Chaohai Pang, Gong Fang, Dingyong Wang. Optimization of ultrasound assisted extraction of celastrol from Celastrus monospermus Roxb. using response surface methodology [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(2): 130-138. |
[4] | Qian Yao, Shi-Xiang Hou, Xi-Hui He, Xuan Zhang, Jun Yan, Xiao-Jun Gou*. Determination of trans-resveratrol in mouse liver by high performance liquid chromatography [J]. , 2008, 17(2): 158-162. |
[5] | ZHANG Xue-jing, ZHU Jie, XIONG Xiao-yun, ZOU Yong*, LIN Hu i-zhen . Synthesis of Resveratrol and Resveratrol Trinicotinate [J]. , 2004, 13(1): 10-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||