Journal of Chinese Pharmaceutical Sciences ›› 2022, Vol. 31 ›› Issue (11): 840-852.DOI: 10.5246/jcps.2022.11.071
• Original articles • Previous Articles Next Articles
Mingkang Zhang1,2, Yuyue Chen2, Yan Zhou2, Xin'an Wu1,2,3,*()
Received:
2022-04-30
Revised:
2022-05-18
Accepted:
2022-06-26
Online:
2022-11-30
Published:
2022-11-30
Contact:
Xin'an Wu
Supporting:
Mingkang Zhang, Yuyue Chen, Yan Zhou, Xin'an Wu. The alleviating effect of quercetin on carbon tetrachloride-induced liver fibrosis in rats and its underlying mechanism[J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(11): 840-852.
[1] |
Song, Y.N.; Dong, S.; Wei, B.; Liu, P.; Zhang, Y.Y.; Su, S.B. Metabolomic mechanisms of gypenoside against liver fibrosis in rats: an integrative analysis of proteomics and metabolomics data. PLoS One. 2017, 12, e0173598.
|
[2] |
Yoshioka, H.; Nonogaki, T.; Fukaya, S.; Ichimaru, Y.; Nagatsu, A.; Yoshikawa, M.; Fujii, H.; Nakao, M. Sasa veitchii extract protects against carbon tetrachloride-induced hepatic fibrosis in mice. Environ. Heal. Prev. Med. 2018, 23, 49.
|
[3] |
Lu, J.; Chen, B.A.; Li, S.L.; Sun, Q. Tryptase inhibitor APC 366 prevents hepatic fibrosis by inhibiting collagen synthesis induced by tryptase/protease-activated receptor 2 interactions in hepatic stellate cells. Int. Immunopharmacol. 2014, 20, 352–357.
|
[4] |
Roehlen, N.; Crouchet, E.; Baumert, T.F. Liver fibrosis: mechanistic concepts and therapeutic perspectives. Cells. 2020, 9, 875.
|
[5] |
Sanchez-Valle, V.; Chavez-Tapia, N.C.; Uribe, M.; Mendez-Sanchez, N. Role of oxidative stress and molecular changes in liver fibrosis: a review. Curr. Med. Chem. 2012, 19, 4850–4860.
|
[6] |
Li, X.M.; Peng, J.H.; Sun, Z.L.; Tian, H.J.; Duan, X.H.; Liu, L.; Ma, X.; Feng, Q.; Liu, P.; Hu, Y.Y. Chinese medicine CGA formula ameliorates DMN-induced liver fibrosis in rats via inhibiting MMP2/9, TIMP1/2 and the TGF-β/Smad signaling pathways. Acta Pharmacol. Sin. 2016, 37, 783–793.
|
[7] |
Parola, M.; Pinzani, M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol. Aspects Med. 2019, 65, 37–55.
|
[8] |
Lin, L.G.; Zhou, F.Y.; Shen, S.N.; Zhang, T. Fighting liver fibrosis with naturally occurring antioxidants. Planta Med. 2018, 84, 1318–1333.
|
[9] |
Turkseven, S.; Bolognesi, M.; Brocca, A.; Pesce, P.; Angeli, P.; di Pascoli, M. Mitochondria-targeted antioxidant mitoquinone attenuates liver inflammation and fibrosis in cirrhotic rats. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 318, G298–G304.
|
[10] |
Gu, J.Y.; Chen, C.; Wang, J.; Chen, T.T.; Yao, W.J.; Yan, T.D.; Liu, Z.G. Withaferin A exerts preventive effect on liver fibrosis through oxidative stress inhibition in a sirtuin 3-dependent manner. Oxid. Med. Cell Longev. 2020, 2020, 2452848.
|
[11] |
Ezhilarasan, D. Oxidative stress is bane in chronic liver diseases: clinical and experimental perspective. Arab J. Gastroenterol. 2018, 19, 56–64.
|
[12] |
Asgharpour, A.; Kumar, D.; Sanyal, A. Bile acids: emerging role in management of liver diseases. Hepatol. Int. 2015, 9, 527–533.
|
[13] |
He, H.W.; Mennone, A.; Boyer, J.L.; Cai, S.Y. Combination of retinoic acid and ursodeoxycholic acid attenuates liver injury in bile duct-ligated rats and human hepatic cells. Hepatology. 2011, 53, 548–557.
|
[14] |
Li, T.T.; Xu, L.J.; Zheng, R.Y.; Wang, X.J.; Li, L.W.; Ji, H.; Hu, Q.H. Picroside II protects against cholestatic liver injury possibly through activation of farnesoid X receptor. Phytomedicine.2020, 68, 153153.
|
[15] |
Padma, V.V.; Lalitha, G.; Shirony, N.P.; Baskaran, R. Effect of quercetin against lindane induced alterations in the serum and hepatic tissue lipids in wistar rats. Asian Pac. J. Trop. Biomed. 2012, 2, 910–915.
|
[16] |
Hernández-Ortega, L.D.; Alcántar-Díaz, B.E.; Ruiz-Corro, L.A.; Sandoval-Rodriguez, A.; Bueno-Topete, M.; Armendariz-Borunda, J.; Salazar-Montes, A.M. Quercetin improves hepatic fibrosis reducing hepatic stellate cells and regulating pro-fibrogenic/anti-fibrogenic molecules balance. J. Gastroenterol. Hepatol. 2012, 27, 1865–1872.
|
[17] |
Costa, L.G.; Garrick, J.M.; Roquè, P.J.; Pellacani, C. Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more. Oxid. Med. Cell Longev. 2016, 2016, 2986796.
|
[18] |
Kemelo, M.K.; Pierzynová, A.; Kutinová Canová, N.; Kučera, T.; Farghali, H. The involvement of sirtuin 1 and heme oxygenase 1 in the hepatoprotective effects of quercetin against carbon tetrachloride-induced sub-chronic liver toxicity in rats. Chem. Biol. Interact. 2017, 269, 1–8.
|
[19] |
Guzel, A.; Yunusoglu, S.; Calapoglu, M.; Candan, I.A.; Onaran, I.; Oncu, M.; Ergun, O.; Oksay, T. Protective effects of quercetin on oxidative stress-induced tubular epithelial damage in the experimental rat hyperoxaluria model. Medicina. 2021, 57, 566.
|
[20] |
Khursheed, R.; Singh, S.K.; Wadhwa, S.; Gulati, M.; Awasthi, A. Enhancing the potential preclinical and clinical benefits of quercetin through novel drug delivery systems. Drug Discov. Today. 2020, 25, 209–222.
|
[21] |
Wu, Y.; Li, Z.; Xiu, A.Y.; Meng, D.X.; Wang, S.N.; Zhang, C.Q. Carvedilol attenuates carbon tetrachloride-induced liver fibrosis and hepatic sinusoidal capillarization in mice. Drug Des. Dev. Ther. 2019, 13, 2667–2676.
|
[22] |
Dong, S.; Cai, F.F.; Chen, Q.L.; Song, Y.N.; Sun, Y.; Wei, B.; Li, X.Y.; Hu, Y.Y.; Liu, P.; Su, S.B. Chinese herbal formula Fuzheng Huayu alleviates CCl4-induced liver fibrosis in rats: a transcriptomic and proteomic analysis. Acta Pharmacol. Sin. 2018, 39, 930–941.
|
[23] |
Ceriotti, F.; Henny, J.; Queraltó, J.; Shen, Z.Y.; Özarda, Y.; Chen, B.R.; Boyd, J.C.; Panteghini, M.; IFCC Committee on Reference Intervals and Decision Limits, Committee on Reference Systems for Enzymes. Common reference intervals for aspartate aminotransferase (AST), alanine aminotransferase (ALT) and γ-glutamyl transferase (GGT) in serum: results from an IFCC multicenter study. Clin. Chem. Lab. Med. 2010, 48, 1593–1601.
|
[24] |
Call, L.; Molina, T.; Stoll, B.; Guthrie, G.; Chacko, S.; Plat, J.; Robinson, J.; Lin, S.; Vonderohe, C.; Mohammad, M.; Kunichoff, D.; Cruz, S.; Lau, P.; Premkumar, M.; Nielsen, J.; Fang, Z.F.; Olutoye, O.; Thymann, T.; Burrin, D. Parenteral lipids shape gut bile acid pools and microbiota profiles in the prevention of cholestasis in preterm pigs. J. Lipid Res. 2020, 61, 1038–1051.
|
[25] |
Asghari, S.; Hamedi-Shahraki, S.; Amirkhizi, F. Systemic redox imbalance in patients with nonalcoholic fatty liver disease. Eur. J. Clin. Investig. 2020, 50, e13211.
|
[26] |
Wei, J.; Chen, J.R.; Fu, L.L.; Han, L.F.; Gao, X.M.; Sarhene, M.; Hu, L.M.; Zhang, Y.C.; Fan, G.W. Polygonum multiflorum Thunb suppress bile acid synthesis by activating Fxr-Fgf15 signaling in the intestine. J. Ethnopharmacol. 2019, 235, 472–480.
|
[27] |
Fang, C.; Sidhu, P.S. Ultrasound-based liver elastography: current results and future perspectives. Abdom. Radiol. NY. 2020, 45, 3463–3472.
|
[28] |
Khomich, O.; Ivanov, A.V.; Bartosch, B. Metabolic hallmarks of hepatic stellate cells in liver fibrosis. Cells. 2019, 9, 24.
|
[29] |
Schuppan, D.; Ashfaq-Khan, M.; Yang, A.T.; Kim, Y.O. Liver fibrosis: direct antifibrotic agents and targeted therapies. Matrix Biol. 2018, 68/69, 435–451.
|
[30] |
Ustuner, D.; Kolac, U.K.; Ustuner, M.C.; Tanrikut, C.; Ozdemir Koroglu, Z.; Burukoglu Donmez, D.; Ozen, H.; Ozden, H. Naringenin ameliorate carbon tetrachloride-induced hepatic damage through inhibition of endoplasmic reticulum stress and autophagy in rats. J. Med. Food. 2020, 23, 1192–1200.
|
[31] |
Elkhoely, A. Diallyl sulfide ameliorates carbon tetrachloride-induced hepatotoxicity in rats via suppressing stress-activated MAPK signaling pathways. J. Biochem. Mol. Toxicol. 2019, 33, e22307.
|
[32] |
Afifi, N.A.; Ibrahim, M.A.; Galal, M.K. Hepatoprotective influence of quercetin and ellagic acid on thioacetamide-induced hepatotoxicity in rats. Can. J. Physiol. Pharmacol. 2018, 96, 624–629.
|
[33] |
Chiş, I.C.; Mureşan, A.; Oros, A.; Nagy, A.L.; Clichici, S. Protective effects of Quercetin and chronic moderate exercise (training) against oxidative stress in the liver tissue of streptozotocin-induced diabetic rats. Acta Physiol. Hung. 2016, 103, 49–64.
|
[34] |
Lin, S.Y.; Wang, Y.Y.; Chen, W.Y.; Chuang, Y.H.; Pan, P.H.; Chen, C.J. Beneficial effect of quercetin on cholestatic liver injury. J. Nutr. Biochem. 2014, 25, 1183–1195.
|
[35] |
Wei, J.; Chen, J.R.; Fu, L.L.; Han, L.F.; Gao, X.M.; Sarhene, M.; Hu, L.M.; Zhang, Y.C.; Fan, G.W. Polygonum multiflorum Thunb suppress bile acid synthesis by activating Fxr-Fgf15 signaling in the intestine. J. Ethnopharmacol. 2019, 235, 472–480.
|
[36] |
Thakare, R.; Alamoudi, J.A.; Gautam, N.; Rodrigues, A.D.; Alnouti, Y. Species differences in bile acids I. Plasma and urine bile acid composition. J. Appl. Toxicol. 2018, 38, 1323–1335.
|
[37] |
Zhang, F.; Xi, L.L.; Duan, Y.T.; Qin, H.Y.; Wei, M.M.; Wu, Y.F.; Li, B.X.; Zhou, Y.; Wu, X.N. The ileum-liver Farnesoid X Receptor signaling axis mediates the compensatory mechanism of 17α-ethynylestradiol-induced cholestasis via increasing hepatic biosynthesis of chenodeoxycholic acids in rats. Eur. J. Pharm. Sci. 2018, 123, 404–415.
|
[38] |
Hirschfield, G.M.; Heathcote, E.J.; Gershwin, M.E. Pathogenesis of cholestatic liver disease and therapeutic approaches. Gastroenterology. 2010, 139, 1481–1496.
|
[39] |
Liu, Y.H.; Chen, K.F.; Li, F.Y.; Gu, Z.L.; Liu, Q.; He, L.Q.; Shao, T.; Song, Q.; Zhu, F.X.; Zhang, L.H.; Jiang, M.W.; Zhou, Y.; Barve, S.; Zhang, X.; McClain, C.J.; Feng, W.K. Probiotic lactobacillus rhamnosus GG prevents liver fibrosis through inhibiting hepatic bile acid synthesis and enhancing bile acid excretion in mice. Hepatology. 2020, 71, 2050–2066.
|
[40] |
Kong, B.; Wang, L.; Chiang, J.Y.L.; Zhang, Y.C.; Klaassen, C.D.; Guo, G.L. Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice. Hepatology. 2012, 56, 1034–1043.
|
[41] |
Schadt, H.S.; Wolf, A.; Pognan, F.; Chibout, S.D.; Merz, M.; Kullak-Ublick, G.A. Bile acids in drug induced liver injury: key players and surrogate markers. Clin. Res. Hepatol. Gastroenterol. 2016, 40, 257–266.
|
[1] | Peijie Chen, Yuntian Zhang. PTP1B restrains the apoptosis of activated hepatic stellate cells (HSCs) induced by TRAIL during the resolution of liver fibrosis [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 867-880. |
[2] | Yongwen Jin, Lili Xi, Yuhui Wei, Xinan Wu. Recognition of specific types of drug-induced liver injury using random forest algorithm: the importance of individual serum bile acid level [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(9): 677-688. |
[3] | Xiaoqing Chen, Bo Peng, Hongmei Jiang, Changxu Zhang, Haiyan Li, Ziyin Li. Salvianolic acid B alleviates oxidative stress in non-alcoholic fatty liver disease by mediating the SIRT3/FOXO1 signaling pathway [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(9): 698-710. |
[4] | Ziyi Wang, Xiaoyan Liu, Yuanjun Zhu, Ye Liu, Pingping Zhang, Yinye Wang. The protective effect of W026B on global cerebral ischemia/reperfusion injury model in rats [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(2): 108-116. |
[5] | Huijie Lv, Tuo Xv, Jun Peng, Gang Luo, Jianqin He, Sisi Yang, Tiancheng Zhang, Shuidong Feng, Hongyan Ling. Dihydromyricetin improves liver fat deposition in high-fat diet-induced obese mice [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(11): 824-839. |
[6] | Chunyang Han, Taotao Sun, Guangtai Fan, Yawei Liu, Cuiyan Liu. Protective effects of Polygonatum sibiricum against CCl4-induced acute liver injury in rats through oxidative stress and mitochondrial apoptotic pathways [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(4): 306-318. |
[7] | Rong Li, Lihua Song, Jie Liu, Yang Bai, Yuming Du, Chunhua Lin, Xiuyuan Su, Zongxue Yu. Cardioprotective effect of Linagliptin on diabetic Wistar rats [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(4): 334-346. |
[8] | Jin Huang, Lingxin Yang, Ning Yang, Bowen Yuan, Hao Zhang, Mengyue Wang. The inhibitory activities of Urtica fissa to BPH [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(4): 236-243. |
[9] | Zhengsheng Liu, Haijun Hao, Mingsong Fan. Quercetin-phospholipids complex solid dispersion and quercetin solid dispersion: preparation and evaluation [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(12): 868-877. |
[10] | Yongwen Jin, Zhi Rao, Yanfang Wu, Guoqiang Zhang, Axi Shi, Yuhui Wei, Xin’an Wu. Acetaminophen-induced hepatotoxicity in rats is correlated with the accumulation of bile acids: an underlying mechanism [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(7): 498-509. |
[11] | Yupeng Wang, Yi Sun, Xiaoping Pu. Endogenous antioxidant DJ-1: A potential target for asthenozoospermia [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(10): 697-708. |
[12] | Huan Liu, Shanshan Fan, Wen Zhang, Yifan Zhang, Teng Li, Mingying Shang, Guangxue Liu, Feng Xu, Shaoqing Cai. Determination of 8,2′-diprenylquercetin 3-methyl ether in plasma by UPLC-MS-MS and its pharmacokinetic application in rats [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(10): 747-753. |
[13] | Asia Abed Al-Mahmood, Limin Shu, Hyuck Kim, Christina Ramirez, Douglas Pung, Yue Guo, Wenji Li, Ah-Ng Tony Kong. Prostate cancer and chemoprevention by natural dietary phytochemicals [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(9): 633-650. |
[14] | Shasha Ji, Yun Lei, Xiaotian Huang, Zhiqin Gao. Protective effects of β-dihydroagarofuran-type sesquiterpene against Aβ25-35-induced neuronal apoptosis and oxidative damage [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(8): 582-589. |
[15] | Qian Yang, Gang Chen, Yang Yang, Xueting Cai, Zhonghua Pang, Chunping Hu, Shuangquan Zhang, Peng Cao. Formononetin ameliorates DSS-induced ulcerative colitis in mice through induction of Nrf2 in colons [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(3): 178-188. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||