Journal of Chinese Pharmaceutical Sciences ›› 2022, Vol. 31 ›› Issue (6): 412-428.DOI: 10.5246/jcps.2022.06.036
• Original articles • Previous Articles Next Articles
Weiping Zhao1, Qi Ge2, Zijun Ding1, Leizhi Pan1, Ziqing Gu1, Yang Liu1,*(), Hua Cai1,*()
Received:
2022-03-12
Revised:
2022-04-20
Accepted:
2022-04-25
Online:
2022-06-30
Published:
2022-06-30
Contact:
Yang Liu, Hua Cai
Supporting:
Weiping Zhao, Qi Ge, Zijun Ding, Leizhi Pan, Ziqing Gu, Yang Liu, Hua Cai. Network pharmacology and metabolomics-based detection of the potential pharmacological effects of the active components in Chrysanthemum morifolium 'Chuju'[J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(6): 412-428.
[1] |
Ren, L.P.; Sun, J.; Chen, S.M.; Gao, J.J.; Dong, B.; Liu, Y.N.; Xia, X.L.; Wang, Y.J.; Liao, Y.; Teng, N.J.; Fang, W.M.; Guan, Z.Y.; Chen, F.D.; Jiang, J.F. A transcriptomic analysis of Chrysanthemum nankingense provides insights into the basis of low temperature tolerance. BMC Genom. 2014, 15, 844.
|
[2] |
Cui, H.Y.; Bai, M.; Sun, Y.H.; Abdel-Samie, M.A.S.; Lin, L. Antibacterial activity and mechanism of Chuzhou chrysanthemum essential oil. J. Funct. Foods. 2018, 48, 159–166.
|
[3] |
Tyagi, S.; Jung, J.A.; Kim, J.S.; Kwon, S.J.; Won, S.Y. The complete chloroplast genome of an economic plant, Chrysanthemum morifolium 'Baekma'. Mitochondrial DNA B. 2019, 4, 3133–3134.
|
[4] |
Yang, L.; Aobulikasimu•Nuerbiye, Cheng, P.; Wang, J.H.; Li, H. Analysis of floral volatile components and antioxidant activity of different varieties of chrysanthemum morifolium. Molecules. 2017, 22, 1790.
|
[5] |
Gui, M.; Du, J.; Guo, J.M.; Xiao, B.Q.; Yang, W.; Li, M.J. Aqueous extract of chrysanthemum morifolium enhances the antimelanogenic and antioxidative activities of the mixture of soy peptide and collagen peptide. J. Tradit. Complement. Med. 2014, 4, 171–176.
|
[6] |
Tu, X.; Wang, H.B.; Huang, Q.; Cai, Y.; Deng, Y.P.; Yong, Z.; Hu, Q.; Feng, J.; Jordan, J.B.; Zhong, S. Screening study on the anti-angiogenic effects of traditional Chinese medicine-part II: Wild chrysanthemum. J. Cancer. 2021, 12, 124–133.
|
[7] |
Kim, H.J.; Lee, Y.S. Identification of new dicaffeoylquinic acids fromChrysanthemum morifoliumand their antioxidant activities. Planta Med. 2005, 71, 871–876.
|
[8] |
Fan, Y.C.; Li, Y.; Cai, H.X.; Li, J.; Miao, J.; Fu, D.X.; Su, K. Three-dimensional fluorescence characteristics of white chrysanthemum flowers. Spectrochim. Acta A. 2014, 130, 411–415.
|
[9] |
Yue, J.; Zhu, C.; Zhou, Y.; Niu, X.; Miao, M.; Tang, X.; Chen, F.; Zhao, W.; Liu, Y. Transcriptome analysis of differentially expressed unigenes involved in flavonoid biosynthesis during flower development of Chrysanthemum morifolium 'Chuju'. Sci. Rep. 2018, 8, 13414
|
[10] |
Feng, S.G.; He, R.F.; Lu, J.J.; Jiang, M.Y.; Shen, X.X.; Jiang, Y.; Wang, Z.A.; Wang, H.Z. Development of SSR markers and assessment of genetic diversity in medicinal chrysanthemum morifolium cultivars. Front. Genet. 2016, 7, 113.
|
[11] |
Xie, Y.Y.; Yuan, D.; Yang, J.Y.; Wang, L.H.; Wu, C.F. Cytotoxic activity of flavonoids from the flowers of Chrysanthemum morifolium on human colon cancer Colon205 cells. J. Asian Nat. Prod. Res. 2009, 11, 771–778.
|
[12] |
He, D.X.; Ru, X.C.; Wen, L.; Wen, Y.C.; Jiang, H.D.; Bruce, I.C.; Jin, J.; Ma, X.; Xia, Q. Total flavonoids of Flos Chrysanthemi protect arterial endothelial cells against oxidative stress. J. Ethnopharmacol. 2012, 139, 68–73.
|
[13] |
Han, A.R.; Nam, B.; Kim, B.R.; Lee, K.C.; Song, B.S.; Kim, S.; Kim, J.B.; Jin, C. Phytochemical composition and antioxidant activities of two different color chrysanthemum flower teas. Molecules. 2019, 24, 329.
|
[14] |
Zhou, Y.; Liu, Z.L.; Chen, Y.C.; Jin, L.H. Identification of the protective effects of traditional medicinal plants against SDS-induced Drosophila gut damage. Exp. Ther. Med. 2016, 12, 2671–2680.
|
[15] |
Sun, H.; Zhang, A.H.; Wang, X.J. Potential role of metabolomic approaches for Chinese medicine syndromes and herbal medicine. Phytother. Res. 2012, 26, 1466–1471.
|
[16] |
Wu, G.S.; Li, H.K.; Zhang, W.D. Metabolomics and its application in the treatment of coronary heart disease with traditional Chinese medicine. Chin. J. Nat. Med. 2019, 17, 321–330.
|
[17] |
Zhang, A.H.; Sun, H.; Wang, P.; Han, Y.; Wang, X.J. Metabonomics for discovering biomarkers of hepatotoxicity and nephrotoxicity. Die Pharmazie. 2012, 67, 99–105.
|
[18] |
Pan, L.L.; Li, Z.Z.; Wang, Y.F.; Zhang, B.Y.; Liu, G.R.; Liu, J.H. Network pharmacology and metabolomics study on the intervention of traditional Chinese medicine Huanglian Decoction in rats with type 2 diabetes mellitus. J. Ethnopharmacol. 2020, 258, 112842.
|
[19] |
Chen, C.C.; Yin, Q.C.; Tian, J.S.; Gao, X.X.; Qin, X.M.; Du, G.H.; Zhou, Y.Z. Studies on the potential link between antidepressant effect of Xiaoyao San and its pharmacological activity of hepatoprotection based on multi-platform metabolomics. J. Ethnopharmacol. 2020, 249, 112432.
|
[20] |
Zhou, S.Z.; Allard, P.M.; Wolfrum, C.; Ke, C.Q.; Tang, C.P.; Ye, Y.; Wolfender, J.L. Identification of chemotypes in bitter melon by metabolomics: a plant with potential benefit for management of diabetes in traditional Chinese medicine. Metabolomics. 2019, 15, 104.
|
[21] |
Su, G.Y.; Wang, H.F.; Bai, J.; Chen, G.; Pei, Y.H. A metabonomics approach to drug toxicology in liver disease and its application in traditional Chinese medicine. Curr. Drug Metab. 2019, 20, 292–300.
|
[22] |
Wu, D.; Prives, C. Relevance of the p53-MDM2 axis to aging. Cell Death Differ. 2018, 25, 169–179.
|
[23] |
Ru, J.L.; Li, P.; Wang, J.N.; Zhou, W.; Li, B.H.; Huang, C.; Li, P.D.; Guo, Z.H.; Tao, W.Y.; Yang, Y.F.; Xu, X.; Li, Y.; Wang, Y.H.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13.
|
[24] |
Fang, J.S.; Wang, L.; Wu, T.; Yang, C.; Gao, L.; Cai, H.B.; Liu, J.H.; Fang, S.H.; Chen, Y.B.; Tan, W.; Wang, Q. Network pharmacology-based study on the mechanism of action for herbal medicines in Alzheimer treatment. J. Ethnopharmacol. 2017, 196, 281–292.
|
[25] |
Tsaioun, K.; Blaauboer, B.J.; Hartung, T. Evidence-based absorption, distribution, metabolism, excretion (ADME) and its interplay with alternative toxicity methods. ALTEX. 2016, 33, 343–358.
|
[26] |
Ghosh, D. Incorporating the empirical null hypothesis into the benjamini-hochberg procedure. Stat. Appl. Genet. Mol. Biol. 2012, 11, 1–21.
|
[27] |
Subiabre, M.; Villalobos-Labra, R.; Silva, L.; Fuentes, G.; Toledo, F.; Sobrevia, L. Role of insulin, adenosine, and adipokine receptors in the foetoplacental vascular dysfunction in gestational diabetes mellitus. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2020, 1866, 165370.
|
[28] |
Belfiore, A.; Malaguarnera, R.; Vella, V.; Lawrence, M.C.; Sciacca, L.; Frasca, F.; Morrione, A.; Vigneri, R. Insulin receptor isoforms in physiology and disease: an updated view. Endocr. Rev. 2017, 38, 379–431.
|
[29] |
Haeusler, R.A.; McGraw, T.E.; Accili, D. Biochemical and cellular properties of insulin receptor signalling. Nat. Rev. Mol. Cell Biol. 2018, 19, 31–44.
|
[30] |
Barbosa, K.; Li, S.; Adams, P.D.; Deshpande, A.J. The role of TP53 in acute myeloid leukemia: challenges and opportunities. Genes Chromosom. Cancer. 2019, 58, 875–888.
|
[31] |
Silwal-Pandit, L.; Langerød, A.; Børresen-Dale, A.L. TP53 Mutations in breast and ovarian cancer. Cold Spring Harb. Perspect. Med. 2017, 7, a026252.
|
[32] |
Wu, W.; Jiao, C.X.; Li, H.; Ma, Y.; Jiao, L.L.; Liu, S.Y. LC-MS based metabolic and metabonomic studies of Panax ginseng. Phytochem. Anal. 2018, 29, 331–340.
|
[33] |
Xiao, H.; Qin, X.Y.; Wan, J.P.; Li, R. Pharmacological targets and the biological mechanisms of formononetin for Alzheimer's disease: a network analysis. Med. Sci. Monit. 2019, 25, 4273–4277.
|
[34] |
Liao, M.L.; Shang, H.H.; Li, Y.Z.; Li, T.; Wang, M.; Zheng, Y.N.; Hou, W.B.; Liu, C.X. An integrated approach to uncover quality marker underlying the effects of Alisma orientale on lipid metabolism, using chemical analysis and network pharmacology. Phytomedicine. 2018, 45, 93–104.
|
[35] |
Ye, X.W.; Deng, Y.L.; Xia, L.T.; Ren, H.M.; Zhang, J.L. Uncovering the mechanism of the effects of Paeoniae Radix Alba on iron-deficiency anaemia through a network pharmacology-based strategy. BMC Complement. Med. Ther. 2020, 20, 130.
|
[36] |
Ogunleye, A.J.; Olanrewaju, A.J.; Arowosegbe, M.; Omotuyi, O.I. Molecular docking based screening analysis of GSK3B. Bioinformation. 2019, 15, 201–208.
|
[37] |
Wu, H.; Lu, X.X.; Wang, J.R.; Yang, T.Y.; Li, X.M.; He, X.S.; Li, Y.; Ye, W.L.; Wu, Y.; Gan, W.J.; Guo, P.D.; Li, J.M. TRAF6 inhibits colorectal cancer metastasis through regulating selective autophagic CTNNB1/β-catenin degradation and is targeted for GSK3B/GSK3β-mediated phosphorylation and degradation. Autophagy. 2019, 15, 1506–1522.
|
[38] |
Zheng, T.; Yang, X.Y.; Wu, D.; Xing, S.S.; Bian, F.; Li, W.J.; Chi, J.Y.; Bai, X.L.; Wu, G.J.; Chen, X.Q.; Zhang, Y.H.; Jin, S. Salidroside ameliorates insulin resistance through activation of a mitochondria-associated AMPK/PI3K/Akt/GSK3β pathway. Br. J. Pharmacol. 2015, 172, 3284–3301.
|
[39] |
Yoshino, Y.; Ishioka, C. Inhibition of glycogen synthase kinase-3 beta induces apoptosis and mitotic catastrophe by disrupting centrosome regulation in cancer cells. Sci. Reports. 2015, 5, 13249.
|
[40] |
Zeng, J.; Liu, D.; Qiu, Z.X.; Huang, Y.; Chen, B.J.; Wang, L.; Xu, H.; Huang, N.; Liu, L.X.; Li, W.M. GSK3β overexpression indicates poor prognosis and its inhibition reduces cell proliferation and survival of non-small cell lung cancer cells. PLoS One. 2014, 9, e91231.
|
[41] |
Lee, S.; Rauch, J.; Kolch, W. Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity. Int. J. Mol. Sci. 2020, 21, 1102.
|
[42] |
Kim, E.K.; Choi, E.J. Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2010, 1802, 396–405.
|
[43] |
McCubrey, J.A.; LaHair, M.M.; Franklin, R.A. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid. Redox Signal. 2006, 8, 1775–1789.
|
[44] |
Dhillon, A.S.; Hagan, S.; Rath, O.; Kolch, W. MAP kinase signalling pathways in cancer. Oncogene. 2007, 26, 3279–3290.
|
[45] |
Marques, C.A.; Keil, U.; Bonert, A.; Steiner, B.; Haass, C.; Müller, W.E.; Eckert, A. Neurotoxic mechanisms caused by the Alzheimer's disease-linked Swedish amyloid precursor protein mutation: oxidative stress, caspases, and the jnk pathway. J. Biol. Chem. 2003, 278, 28294–28302.
|
[46] |
Chiarini, A.; dal Pra, I.; Marconi, M.; Chakravarthy, B.; Whitfield, J.F.; Armato, U. Calcium-sensing receptor (CaSR) in human brain's pathophysiology: roles in late-onset Alzheimer's disease (LOAD). Curr. Pharm. Biotechnol. 2009, 10, 317–326.
|
[47] |
Kheiri, G.; Dolatshahi, M.; Rahmani, F.; Rezaei, N. Role of p38/MAPKs in Alzheimer's disease: implications for amyloid beta toxicity targeted therapy. Rev. Neurosci. 2018, 30, 9–30.
|
[48] |
Melone, M.A.B.; Dato, C.; Paladino, S.; Coppola, C.; Trebini, C.; Giordana, M.T.; Perrone, L. Verapamil inhibits Ser202/Thr205 phosphorylation of tau by blocking TXNIP/ROS/p38 MAPK pathway. Pharm. Res. 2018, 35, 44.
|
[49] |
Fang, J.Y.; Richardson, B.C. The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 2005, 6, 322–327.
|
[1] | Mengyao Wu, Lu Liu, Peng Zhang, Lele Zhang, Yun Gong, Xiuwei Yang. Exploring the mechanism of Buxue Yimu Pills on postpartum abdominal pain through network pharmacology and experimental validation [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 691-703. |
[2] | Ping Shang, Lin Liu, Yi Fang. Investigating the mechanism of action of Gui Zhi Fu Ling Wan in the treatment of endometriosis based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 704-719. |
[3] | Gedi Zhang, Gengxin Liu, Ziyou Yan. Therapeutic efficacy evaluation and mechanism of action based on meta-analysis and network pharmacology of Li Chong Decoction (Bolus) for cancer treatment [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 720-735. |
[4] | Dongyan Wu, Xiaodan Wang, Jinmiao Chai, Qinqing Li, Yue Li, Mei Bi, Wanwei Gui, Huimin Cao. Study on the mechanism of Danggui Buxue decoction in the treatment of diabetic retinopathy based on network pharmacology and experiment [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 527-538. |
[5] | Huan Yan, Jian Wang, Hao Fu, Min Yang, Miao Qu, Zhie Fang. Discussion on the potential target and mechanism of Dachaihu Decoction in treating hyperlipidemia based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(6): 446-459. |
[6] | Mengya Wang, Kuanyou Zhang, Xin Chen, Hao Fu, Shouchun Peng. Study on the mechanism of Rhinoceros Horn and Rehmannia Decoction in the treatment of systemic lupus erythematosus based on the method of network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 351-359. |
[7] | Guangzhi Shen, Xingang Cui, Zhimin Na, Yulong Zou, Guihua Zou. A network pharmacology approach to explore the pharmacological mechanism of Epimedium brevicornum in sexual dysfunction [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 379-391. |
[8] | Min Ao, Minglan Bao, Yaxing Hou, Ying Yue, Huifang Li, Guohua Wu, Su Ri Ga La Tu. Study on the mechanism of Mongolian medicine Herba Lomatognii against acute liver injury based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 268-282. |
[9] | Yajing Li, Yawen Bai, Yu Du, Changhong Yan, Chunjie Ma, Lining Sun, Fengyue Bu, Haoyang Yan. Yu Ping Feng Powder for chronic glomerulonephritis treatment: A meta-analysis and network pharmacology study [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(12): 1006-1026. |
[10] | Zhiyong Sun, Shuli Gao, Yang Zhang, Gangqiang Xue, Zilin Yuan, Shaonan Wang. Study on the potential mechanism of Pu Gong Ying in treating breast hyperplasia based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 893-910. |
[11] | Yuqian Zhang, Haiying Niu, Yiran Jin. Network pharmacology-based strategy to investigate anticancer mechanisms of Catharanthus roseus (L.) G. Don [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 911-922. |
[12] | Daiying Zhou, Jing Chen, Zhigang Lv. Network pharmacology prediction and molecular docking-based study on the mechanism of Erigeron breviscapus in the treatment of age-related macular degeneratio [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 923-934. |
[13] | Dongsheng Wei, Xiaosheng Liu, Luzhen Li, Jiajie Qi, Yuxuan Wang, Zhe Zhang. Unraveling the biological and immunological mechanisms of safflower-danshen in the treatment of coronary atherosclerotic heart disease: a comprehensive bioinformatics and single-cell sequencing approach [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(10): 796-812. |
[14] | Ning Ding, Tao Zhang, Ji Luo, Haochen Liu, Yu Deng, Yongheng He. Study on the mechanism of Baishao Qiwu Decoction in the treatment of colorectal cancer based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(1): 17-31. |
[15] | Ipargul Hafiz, Zhaozhi Wang, Hongji He, Zhezhe Li, Mei Wang. Exploring the mechanism of Peganum harmala L. seeds on hepatocellular carcinoma based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(7): 517-529. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||