Journal of Chinese Pharmaceutical Sciences ›› 2022, Vol. 31 ›› Issue (5): 343-359.DOI: 10.5246/jcps.2022.05.030
• Original articles • Previous Articles Next Articles
Yinglin Yang1,2, Shanshan Zhang1,2, Man Liu1,2, Dongni Liu1,2, Yuehua Wang1,2,*(), Guanhua Du1,2,*()
Received:
2021-12-12
Revised:
2022-02-18
Accepted:
2022-03-06
Online:
2022-06-02
Published:
2022-06-02
Contact:
Yuehua Wang, Guanhua Du
Supporting:
Yinglin Yang, Shanshan Zhang, Man Liu, Dongni Liu, Yuehua Wang, Guanhua Du. Network pharmacological analysis of Xiao-Xu-Ming decoction against ischemic stroke and verification of its mechanism of anti-inflammation and neurovascular protection in vivo[J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(5): 343-359.
[1] |
Liu, L.L.; Chen, H.P.; Jin, J.; Tang, Z.B.; Yin, P.Q.; Zhong, D.; Li, G.Z. Melatonin ameliorates cerebral ischemia/reperfusion injury through SIRT3 activation. Life Sci. 2019, 239, 117036.
|
[2] |
Shi, K.B.; Tian, D.C.; Li, Z.G.; Ducruet, A.F.; Lawton, M.T.; Shi, F.D. Global brain inflammation in stroke. Lancet Neurol. 2019, 18, 1058–1066.
|
[3] |
Jayaraj, R.L.; Azimullah, S.; Beiram, R.; Jalal, F.Y.; Rosenberg, G.A. Neuroinflammation: friend and foe for ischemic stroke. J. Neuroinflammation. 2019, 16, 142.
|
[4] |
Anrather, J.; Iadecola, C. Inflammation and stroke: an overview. Neurotherapeutics. 2016, 13, 661–670.
|
[5] |
Xie, P.; Deng, M.; Sun, Q.G.; Ma, Y.G.; Zhou, Y.; Ming, J.H.; Chen, Q.; Liu, S.Q.; Liu, J.Q.; Cai, J.; Wu, F. Therapeutic effect of transplantation of human bone marrow‑derived mesenchymal stem cells on neuron regeneration in a rat model of middle cerebral artery occlusion. Mol. Med. Rep. 2019, 20, 3065–3074.
|
[6] |
Marques, B.L.; Carvalho, G.A.; Freitas, E.M.M.; Chiareli, R.A.; Barbosa, T.G.; di Araújo, A.G.P.; Nogueira, Y.L.; Ribeiro, R.I.; Parreira, R.C.; Vieira, M.S.; Resende, R.R.; Gomez, R.S.; Oliveira-Lima, O.C.; Pinto, M.C.X. The role of neurogenesis in neurorepair after ischemic stroke. Semin. Cell Dev. Biol. 2019, 95, 98–110.
|
[7] |
Zhai, Z.Y.; Feng, J. Constraint-induced movement therapy enhances angiogenesis and neurogenesis after cerebral ischemia/reperfusion. Neural Regen. Res. 2019, 14, 1743–1754.
|
[8] |
Venkat, P.; Shen, Y.; Chopp, M.; Chen, J.L. Cell-based and pharmacological neurorestorative therapies for ischemic stroke. Neuropharmacology. 2018, 134, 310–322.
|
[9] |
Hu, Y.Z.; Wang, J. Interactions between clopidogrel and traditional Chinese medicine. J. Thromb. Thrombolysis. 2019, 48, 491–499.
|
[10] |
Niu, B.X.; Zhang, H.; Li, C.Y.; Yan, F.L.; Song, Y.; Hai, G.F.; Jiao, Y.J.; Feng, Y.S. Network pharmacology study on the active components of Pterocypsela elata and the mechanism of their effect against cerebral ischemia. Drug Des. Dev. Ther. 2019, 13, 3009–3019.
|
[11] |
Lan, R.; Zhang, Y.; Xiang, J.; Zhang, W.; Wang, G.H.; Li, W.W.; Xu, L.L.; Cai, D.F. Xiao-Xu-Ming decoction preserves mitochondrial integrity and reduces apoptosis after focal cerebral ischemia and reperfusion via the mitochondrial p53 pathway. J. Ethnopharmacol. 2014, 151, 307–316.
|
[12] |
Jia, Z.; Tie, C.; Wang, C.; Wu, C.; Zhang, J. Perturbed lipidomic profiles in rats with chronic cerebral ischemia are regulated by Xiao-Xu-Ming decoction. Front. Pharmacol. 2019, 10, 264.
|
[13] |
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13.
|
[14] |
Wang, Y.H.; Yang, Y.L.; Cheng, X.; Zhang, J.; Li, W.; Du, G.H. Xiao-Xu-Ming decoction extract regulates differentially expressed proteins in the hippocampus after chronic cerebral hypoperfusion. Neural Regen. Res. 2019, 14, 470–479.
|
[15] |
Ma, Y.Z.; Li, L.; Song, J.K.; Niu, Z.R.; Liu, H.F.; Zhou, X.S.; Xie, F.S.; Du, G.H. A novel embolic middle cerebral artery occlusion model induced by thrombus formed in common carotid artery in rat. J. Neurol. Sci. 2015, 359, 275–279.
|
[16] |
Cheng, X.; Yang, Y.L.; Yang, H.; Wang, Y.H.; Du, G.H. Kaempferol alleviates LPS-induced neuroinflammation and BBB dysfunction in mice via inhibiting HMGB1 release and down-regulating TLR4/MyD88 pathway. Int. Immunopharmacol. 2018, 56, 29–35.
|
[17] |
Li, W.H.; Yang, Y.L.; Cheng, X.; Liu, M.; Zhang, S.S.; Wang, Y.H.; Du, G.H. Baicalein attenuates caspase-independent cells death via inhibiting PARP-1 activation and AIF nuclear translocation in cerebral ischemia/reperfusion rats. Apoptosis. 2020, 25, 354–369.
|
[18] |
Yang, Y.L.; Liu, M.; Cheng, X.; Li, W.H.; Zhang, S.S.; Wang, Y.H.; Du, G.H. Myricitrin blocks activation of NF-κB and MAPK signaling pathways to protect nigrostriatum neuron in LPS-stimulated mice. J. Neuroimmunol. 2019, 337, 577049.
|
[19] |
Ozaki, T.; Nakamura, H.; Kishima, H. Therapeutic strategy against ischemic stroke with the concept of neurovascular unit. Neurochem. Int. 2019, 126, 246–251.
|
[20] |
Patel, R.A.G.; McMullen, P.W. Neuroprotection in the treatment of acute ischemic stroke. Prog. Cardiovasc. Dis. 2017, 59, 542–548.
|
[21] |
Zhu, X.H.; Chen, S.Y.; Gao, T.M. Xiaoxuming decoction and stroke: a literature-based study. Acad J. First Med. Coll. PLA. 2002, 22, 564–565.
|
[22] |
Luo, X.Y.; Chen, X.R.; Shen, X.L.; Yang, Z.H.; Du, G.H. Rapid identification and analysis of the active components of traditional Chinese medicine Xiaoxuming decoction for ischemic stroke treatment by integrating UPLC-Q-TOF/MS and RRLC-QTRAP MSn method. J. Chromatogr. B. 2019, 1124, 313–322.
|
[23] |
Wang, C.H.; Jia, Z.X.; Wang, Z.; Hu, T.; Qin, H.L.; Du, G.H.; Wu, C.S.; Zhang, J.L. Pharmacokinetics of 21 active components in focal cerebral ischemic rats after oral administration of the active fraction of Xiao-Xu-Ming decoction. J. Pharm. Biomed. Anal. 2016, 122, 110–117.
|
[24] |
Wang, Y.H. Activity evaluation of components and preparation of effective components group of Xiaoxuming decoction for anti-cerebral ischemic. China J. Chin. Mater. Med. 2011, 36, 2140. DOI:10.4268/cjcmm20111528.
|
[25] |
Wang, Y.L.; Ding, C.G.; Du, K.H.; Xiao, Y.; Wu, C.S.; Zhang, J.L.; Qin, H.L.; Du, G.H. Identification of active compounds and their metabolites by high-performance liquid chromatography/electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry from Xiao-Xu-Ming decoction (XXMD). Rapid Commun. Mass Spectrom. 2009, 23, 2724–2732.
|
[26] |
Yang, S.; Shen, Y.; Lu, W.; Yang, Y.; Wang, H.; Li, L.; Wu, C.; Du, G. Evaluation and identification of the neuroprotective compounds of xiaoxuming decoction by machine learning: a novel mode to explore the combination rules in traditional Chinese medicine prescription. Biomed Res. Int. 2019, 2019, 6847685.
|
[27] |
Wang, Y.H. Effects of the active components of Chinese herbal medicine Xiaoxuming Decoction on memory behavior and brain injury in rats with chronic cerebral ischemia. J. Chin. Integr. Med. 2012, 10, 91–99.
|
[28] |
Du, X.; Lu, C.; He, X.L.; Du, G.H. Effects of active components group of Xiaoxuming decoction on brain mitochondria in cerebral ischemia/reperfusion rats during early recovery period. China J. Chin. Mater. Med. 2017, 42, 2139–2145.
|
[29] |
Xiao, C. Xiao-Xu-Ming decoction extract alleviates LPS-induced neuroinflammation associated with down-regulating TLR4/MyD88 signaling pathway in vitro and in vivo. J. Chin. Pharm. Sci. 2019, 28, 88–99.
|
[30] |
Yang, Y.L.; Zhang, S.S.; Liu, M.; Wang, Y.H.; Du, G.H. Xiao-Xu-Ming decoction extract ameliorates brain injury in rats with thrombotic focal ischemic stroke and understanding possible therapeutic targets using proteomics. J. Chin. Pharm. Sci. 2021, 30, 468–483.
|
[31] |
Rahimifard, M.; Maqbool, F.; Moeini-Nodeh, S.; Niaz, K.; Abdollahi, M.; Braidy, N.; Nabavi, S.M.; Nabavi, S.F. Targeting the TLR4 signaling pathway by polyphenols: a novel therapeutic strategy for neuroinflammation. Ageing Res. Rev. 2017, 36, 11–19.
|
[32] |
Ridder, D.A.; Schwaninger, M. NF-κB signaling in cerebral ischemia. Neuroscience. 2009, 158, 995–1006.
|
[33] |
Greenberg, D.A. Cerebral angiogenesis: a realistic therapy for ischemic disease? Methods Mol. Biol. 2014, 1135, 21–24.
|
[34] |
Xiang, Y.Y.; Yao, X.Q.; Wang, X.; Zhao, H.; Zou, H.Y.; Wang, L.; Zhang, Q.X. Houshiheisan promotes angiogenesis via HIF-1α/VEGF and SDF-1/CXCR4 pathways: in vivo and in vitro. Biosci. Rep. 2019, 39, BSR20191006. DOI:10.1042/bsr20191006.
|
[35] |
Cárdenas-Rivera, A.; Campero-Romero, A.N.; Heras-Romero, Y.; Penagos-Puig, A.; Rincón-Heredia, R.; Tovar-Y-Romo, L.B. Early post-stroke activation of vascular endothelial growth factor receptor 2 hinders the receptor 1-dependent neuroprotection afforded by the endogenous ligand. Front. Cell Neurosci. 2019, 13, 270.
|
[36] |
Zhou, J.; Du, T.; Li, B.M.; Rong, Y.; Verkhratsky, A.; Peng, L. Crosstalk between MAPK/ERK and PI3K/AKT signal pathways during brain ischemia/reperfusion. ASN Neuro. 2015, 7, 175909141560246.
|
[37] |
Lahiani, A.; Brand-Yavin, A.; Yavin, E.; Lazarovici, P. Neuroprotective effects of bioactive compounds and MAPK pathway modulation in "ischemia"—stressed PC12 pheochromocytoma cells. Brain Sci. 2018, 8, 32.
|
[38] |
Seil, F.J. Activity-dependent inhibitory synaptogenesis in cerebellar cultures. Brain Plast. 2016, 1, 207–214.
|
[39] |
Binder, D.K.; Scharfman, H.E. Brain-derived neurotrophic factor. Growth Factors. 2004, 22, 123–131.
|
[40] |
Lu, B.; Nagappan, G.; Lu, Y. BDNF and synaptic plasticity, cognitive function, and dysfunction Neurotrophic Factors. 2014, 220, 223–250.
|
[1] | Mengyao Wu, Lu Liu, Peng Zhang, Lele Zhang, Yun Gong, Xiuwei Yang. Exploring the mechanism of Buxue Yimu Pills on postpartum abdominal pain through network pharmacology and experimental validation [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 691-703. |
[2] | Ping Shang, Lin Liu, Yi Fang. Investigating the mechanism of action of Gui Zhi Fu Ling Wan in the treatment of endometriosis based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 704-719. |
[3] | Gedi Zhang, Gengxin Liu, Ziyou Yan. Therapeutic efficacy evaluation and mechanism of action based on meta-analysis and network pharmacology of Li Chong Decoction (Bolus) for cancer treatment [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 720-735. |
[4] | Dongyan Wu, Xiaodan Wang, Jinmiao Chai, Qinqing Li, Yue Li, Mei Bi, Wanwei Gui, Huimin Cao. Study on the mechanism of Danggui Buxue decoction in the treatment of diabetic retinopathy based on network pharmacology and experiment [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 527-538. |
[5] | Huan Yan, Jian Wang, Hao Fu, Min Yang, Miao Qu, Zhie Fang. Discussion on the potential target and mechanism of Dachaihu Decoction in treating hyperlipidemia based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(6): 446-459. |
[6] | Mengya Wang, Kuanyou Zhang, Xin Chen, Hao Fu, Shouchun Peng. Study on the mechanism of Rhinoceros Horn and Rehmannia Decoction in the treatment of systemic lupus erythematosus based on the method of network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 351-359. |
[7] | Guangzhi Shen, Xingang Cui, Zhimin Na, Yulong Zou, Guihua Zou. A network pharmacology approach to explore the pharmacological mechanism of Epimedium brevicornum in sexual dysfunction [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 379-391. |
[8] | Min Ao, Minglan Bao, Yaxing Hou, Ying Yue, Huifang Li, Guohua Wu, Su Ri Ga La Tu. Study on the mechanism of Mongolian medicine Herba Lomatognii against acute liver injury based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 268-282. |
[9] | Yajing Li, Yawen Bai, Yu Du, Changhong Yan, Chunjie Ma, Lining Sun, Fengyue Bu, Haoyang Yan. Yu Ping Feng Powder for chronic glomerulonephritis treatment: A meta-analysis and network pharmacology study [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(12): 1006-1026. |
[10] | Zhiyong Sun, Shuli Gao, Yang Zhang, Gangqiang Xue, Zilin Yuan, Shaonan Wang. Study on the potential mechanism of Pu Gong Ying in treating breast hyperplasia based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 893-910. |
[11] | Yuqian Zhang, Haiying Niu, Yiran Jin. Network pharmacology-based strategy to investigate anticancer mechanisms of Catharanthus roseus (L.) G. Don [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 911-922. |
[12] | Daiying Zhou, Jing Chen, Zhigang Lv. Network pharmacology prediction and molecular docking-based study on the mechanism of Erigeron breviscapus in the treatment of age-related macular degeneratio [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 923-934. |
[13] | Dongsheng Wei, Xiaosheng Liu, Luzhen Li, Jiajie Qi, Yuxuan Wang, Zhe Zhang. Unraveling the biological and immunological mechanisms of safflower-danshen in the treatment of coronary atherosclerotic heart disease: a comprehensive bioinformatics and single-cell sequencing approach [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(10): 796-812. |
[14] | Ning Ding, Tao Zhang, Ji Luo, Haochen Liu, Yu Deng, Yongheng He. Study on the mechanism of Baishao Qiwu Decoction in the treatment of colorectal cancer based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(1): 17-31. |
[15] | Ipargul Hafiz, Zhaozhi Wang, Hongji He, Zhezhe Li, Mei Wang. Exploring the mechanism of Peganum harmala L. seeds on hepatocellular carcinoma based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(7): 517-529. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||