Journal of Chinese Pharmaceutical Sciences ›› 2021, Vol. 30 ›› Issue (11): 895-903.DOI: 10.5246/jcps.2021.11.077
• Original articles • Previous Articles Next Articles
Shihui Li1, Kemeng Guo1, Nining Yin1, Mingzhu Shan1, Yao Zhu2, Ying Li1,*()
Received:
2021-05-18
Revised:
2021-06-21
Accepted:
2021-08-12
Online:
2021-11-28
Published:
2021-11-28
Contact:
Ying Li
Supporting:
Shihui Li, Kemeng Guo, Nining Yin, Mingzhu Shan, Yao Zhu, Ying Li. Teasaponin induces reactive oxygen species-mediated mitochondrial dysfunction in Candida albicans[J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(11): 895-903.
[1] |
Fu, J.J.; Ding, Y.L.; Wei, B.; Wang, L.; Xu, S.L.; Qin, P.X.; Wei, L.H.; Jiang, L.J. Epidemiology of Candida albicans and non-C.albicans of neonatal candidemia at a tertiary care hospital in Western China. BMC Infect. Dis. 2017, 17, 329.
|
[2] |
Mayer, F.L.; Wilson, D.; Hube, B. Candida albicans pathogenicity mechanisms. Virulence. 2013, 4, 119–128.
|
[3] |
Lamoth, F.; Lockhart, S.R.; Berkow, E.L.; Calandra, T. Changes in the epidemiological landscape of invasive candidiasis. J. Antimicrob. Chemother. 2018, 73, i4–i13.
|
[4] |
Pfaller, M.A.; Diekema, D.J.; Turnidge, J.D.; Castanheira, M.; Jones, R.N. Twenty years of the SENTRY antifungal surveillance program: results for candida species from 1997–2016. Open Forum Infet. Dis. 2019, 6, S79–S94.
|
[5] |
Pfaller, M.A.; Moet, G.J.; Messer, S.A.; Jones, R.N.; Castanheira, M. Candida bloodstream infections: comparison of species distributions and antifungal resistance patterns in community-onset and nosocomial isolates in the SENTRY Antimicrobial Surveillance Program, 2008–2009. Antimicrob. Agents Chemother. 2011, 55, 561–566.
|
[6] |
Sehu, M.M.; Sidjabat, H.; Ellis, D.; McCormack, J.; Geoffrey Playford, E.; Paterson, D.L. Emergence of novel mutations of caspofungin resistance in candida glabrata with prolonged therapy. Pathology. 2010, 42, S60.
|
[7] |
Patridge, E.; Gareiss, P.; Kinch, M.S.; Hoyer, D. An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov. Today. 2016, 21, 204–207.
|
[8] |
Tang, G.Y.; Meng, X.; Gan, R.Y.; Zhao, C.N.; Li, H.B. Health functions and related molecular mechanisms of tea components: an update review. Int. J. Mol. Sci. 2019, 20, 6196.
|
[9] |
Li, J.; Zhang, A.Y.; Qi, Y.J.; Meng, X.C.; Zhang, Z.Q. Research progress in tea saponin from oil residue of camellia semiserrata. Food Sci. 2012, 33, 276–279.
|
[10] |
Yang, X.P.; Jiang, X.D. Antifungal activity and mechanism of tea polyphenols against Rhizopus stolonifer. Biotechnol. Lett. 2015, 37, 1463–1472.
|
[11] |
Khan, M.I.; Ahhmed, A.; Shin, J.H.; Baek, J.S.; Kim, M.Y.; Kim, J.D. Green tea seed isolated saponins exerts antibacterial effects against various strains of gram positive and gram negative bacteria, a comprehensive study in vitro and in vivo. Evid. Based Complementary Altern. Med. 2018, 2018, 3486106.
|
[12] |
Li, E.; Sun, N.; Zhao, J.X.; Sun, Y.G.; Huang, J.G.; Lei, H.M.; Guo, J.H.; Hu, Y.L.; Wang, W.K.; Li, H.Q. In vitro evaluation of antiviral activity of tea seed saponins against porcine reproductive and respiratory syndrome virus. Antivir. Ther. 2015, 20, 743–752.
|
[13] |
Rugera, S. Antipyretic and antinociceptive properties of the aqueous extract and Saponin from an edible vegetable: Vernonia amygdalina leaf. Afr. J. Food Agric. Nutr. Dev. 2013, 13, 7587–7606.
|
[14] |
Sharangi Baran, A.B. Bioactive compounds and antioxidant properties of tea: status, global research and potentialities. J. Tea Sci. Res. 2016, 5, 1–13.
|
[15] |
Li, Y.; Shan, M.; Li, S.; Wang, Y.; Yang, H.; Chen, Y.; Gu, B.; Zhu, Z. Teasaponin suppresses Candida albicans filamentation by reducing the level of intracellular cAMP. Ann. Transl. Med. 2020, 8, 175–187.
|
[16] |
National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved standard. NCCLS. 2008, 28, 1–25.
|
[17] |
Hadacek, F.; Greger, H. Testing of antifungal natural products: methodologies, comparability of results and assay choice. Phytochem. Anal. 2000, 11, 137–147.
|
[18] |
Ding, X.R.; Yan, D.H.; Sun, W.; Zeng, Z.Y.; Su, R.R.; Su, J.R. Epidemiology and risk factors for nosocomial Non-Candida albicans candidemia in adult patients at a tertiary care hospital in North China. Med. Mycol. 2015, 53, 684–690.
|
[19] |
Pristov, K.E.; Ghannoum, M.A. Resistance of Candida to azoles and echinocandins worldwide. Clin. Microbiol. Infect. 2019, 25, 792–798.
|
[20] |
Dantas Ada, S.; Day, A.; Ikeh, M.; Kos, I.; Achan, B.; Quinn, J. Oxidative stress responses in the human fungal pathogen, Candida albicans. Biomolecules. 2015, 5, 142–165.
|
[21] |
Mesa-Arango, A.C.; Trevijano-Contador, N.; Román, E.; Sánchez-Fresneda, R.; Casas, C.; Herrero, E.; Argüelles, J.C.; Pla, J.; Cuenca-Estrella, M.; Zaragoza, O. The production of reactive oxygen species is a universal action mechanism of Amphotericin B against pathogenic yeasts and contributes to the fungicidal effect of this drug. Antimicrob. Agents Chemother. 2014, 58, 6627–6638.
|
[22] |
Leite, M.C.; Bezerra, A.P.; de Sousa, J.P.; Guerra, F.Q.; Lima Ede, O. Evaluation of antifungal activity and mechanism of action of citral against candida albicans. Evid. Based Complementary Altern. Med. 2014, 2014, 378280.
|
[23] |
Li, W.R.; Shi, Q.S.; Dai, H.Q.; Liang, Q.; Xie, X.B.; Huang, X.M.; Zhao, G.Z.; Zhang, L.X. Antifungal activity, kinetics and molecular mechanism of action of garlic oil against Candida albicans. Sci. Rep. 2016, 6, 22805.
|
[24] |
Handy, D.E.; Loscalzo, J. Redox regulation of mitochondrial function. Antioxid. Redox Signal. 2012, 16, 1323–1367.
|
[25] |
Villanueva, C.; Kross, R.D. Antioxidant-induced stress. Int. J. Mol. Sci. 2012, 13, 2091–2109.
|
[26] |
Traber, M.G.; Stevens, J.F. Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 2011, 51, 1000–1013.
|
[27] |
De Francesco, E.M.; Bonuccelli, G.; Maggiolini, M.; Sotgia, F.; Lisanti, M.P. Vitamin C and Doxycycline: a synthetic lethal combination therapy targeting metabolic flexibility in cancer stem cells (CSCs). Oncotarget. 2017, 8, 67269–67286.
|
[28] |
Bonuccelli, G.; De Francesco, E.M.; de Boer, R.; Tanowitz, H.B.; Lisanti, M.P. NADH autofluorescence, a new metabolic biomarker for cancer stem cells: Identification of Vitamin C and CAPE as natural products targeting "stemness". Oncotarget. 2017, 8, 20667–20678.
|
[29] |
Ott, M.; Gogvadze, V.; Orrenius, S.; Zhivotovsky, B. Mitochondria, oxidative stress and cell death. Apoptosis. 2007, 12, 913–922.
|
[1] | Shuang Li, Minggang Dong, Chunyan Guo, Shuangshuang Li, Sihan You, Ye Wan, Xinxing Liu. Taohong Siwu dispensing granules alleviate rotenone-induced SH-SY5Y cellular cytotoxicity by rescuing mitochondrial dysfunction and amino acid metabolism disarrangements [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 360-378. |
[2] | Jingru Wang, Shuang Zhang, Zhuoyue Li, Meiqi Xu, Guangxue Wang, Xuan Zhang. Preparation and characterization of pH-sensitive calcium carbonate-chlorin e6 nanoparticles for photodynamic therapy [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(11): 904-911. |
[3] | Yihua Hong, Tongtong Liu, Yanjun Liu, Jingxuan Wu, Xiaogai Yang. Vanadium compounds induce stronger growth suppression in PTEN-deficient prostate cancer cells by ROS-mediated mechanism [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(6): 432-439. |
[4] | Yupeng Wang, Yi Sun, Xiaoping Pu. Endogenous antioxidant DJ-1: A potential target for asthenozoospermia [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(10): 697-708. |
[5] | Lidan Bai, Xue Li, Qing Chang, Rui Wu, Jing Zhang, Xiaoda Yang. Cinnamaldehyde promotes mitochondrial function and reduces Aβ toxicity in neural cells [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(8): 605-613. |
[6] | Hongjun Xie, Lei Liu, Fan Zeng, Limin Mu, Yao Zhao, Yan Yan, Yingjie Hu, Jiashuan Wu, Yingzi Bu, Jingying Zhang, Wanliang Lu. Efficacy and mechanism of antiresistant vinorelbine liposomes in treating resistant breast cancer cells [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(7): 489-501. |
[7] | Yi Li, Jingcheng Liu, You Yu, Weixia Bian, Xia Hu, Xiaogai Yang. Role of vanadyl acetylacetonate-induced elevation of reactive oxygen species in the regulation of lipolysis and glucose metabolism in 3T3L1 adipocytes [J]. Journal of Chinese Pharmaceutical Sciences, 2015, 24(11): 726-733. |
[8] | Chenyi Huo, Huixue Liu. Amavadin induced PTP opening not through the promotion of ROS generation in rat kidney mitochondria [J]. Journal of Chinese Pharmaceutical Sciences, 2014, 23(12): 830-836. |
[9] | Kun Xiong, Wei Xu, Huihui Zeng* . Reactive oxygen species mediate ethaselen-induced rapid apoptosis in A549 cells [J]. Journal of Chinese Pharmaceutical Sciences, 2014, 23(1): 54-59. |
[10] | Lijia Yuan, Cong Wang, Wei Liu, Wenlong Liu, Baodi Gou*, Tianlan Zhang* . Realgar induces differentiation through ROS-dependent mitochondrial pathway in HL-60 cells [J]. , 2013, 22(2): 184-189. |
[11] | Xiao Wan, Baodi Gou*, Kui Wang*. Gadolinium-promoted angiogenesis involves the activation of PKCα/β2 and MAPKs in human umbilical vein endothelial cells [J]. , 2013, 22(1): 71-76. |
[12] | Congcong Hou, Gang Wang, Xiaogai Yang*. Mitochondria as the main source of vanadyl acetylacetonate-induced reactive oxygen species generation in renal epithelial cell lines [J]. , 2013, 22(1): 77-80. |
[13] | Tong-Tong Liu, Yan-Jun Liu, Xiao-Gai Yang* . Role of reactive oxygen species in the antiproliferative effects of metavanadate on human prostate cancer DU145 cells [J]. , 2012, 21(1): 57-61. |
[14] | Zhe Shi, Hui-Xue Liu*, Xiao-Da Yang*. Vanadium stimulates mitochondrial ROS production in different ways [J]. , 2011, 20(5): 498-504. |
[15] | Xin Zhao, Xin Wang, Ke-Fu Yu, Yu Duan, Jie-Si Li, Bing-Xiang Zhao, Xuan Zhang*, Qiang Zhang. Effects of dichloroacetate on the activation of the mitochondrial pathway in C6 cells in vitro [J]. , 2011, 20(5): 460-465. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||