Journal of Chinese Pharmaceutical Sciences ›› 2021, Vol. 30 ›› Issue (3): 189-205.DOI: 10.5246/jcps.2021.03.015
• Original articles • Next Articles
Kaisen Li1,2, Rudong Wang1,2, Yiwei Peng1,2, Dawen Dong3, Xianrong Qi1,2,*()
Received:
2020-09-05
Revised:
2020-10-11
Accepted:
2020-11-16
Online:
2021-03-29
Published:
2021-03-29
Contact:
Xianrong Qi
Supporting:
Kaisen Li, Rudong Wang, Yiwei Peng, Dawen Dong, Xianrong Qi. Riboflavin-modified lipo-polyplexes co-delivering CXCR4 siRNA and doxorubicin for treatment of highly metastatic cancer[J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(3): 189-205.
[1] |
Müller, A.; Homey, B.; Soto, H.; Ge, N.F.; Catron, D.; Buchanan, M.E.; McClanahan, T.; Murphy, E.; Yuan, W.; Wagner, S.N.; Barrera, J.L.; Mohar, A.; Verástegui, E.; Zlotnik, A. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001, 410, 50–56.
|
[2] |
Mousavi, A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol. Lett. 2020, 217, 91–115.
|
[3] |
Domanska, U.M.; Kruizinga, R.C.; Nagengast, W.B.; Timmer-Bosscha, H.; Huls, G.; de Vries, E.G.E.; Walenkamp, A.M.E. A review on CXCR4/CXCL12 axis in oncology: No place to hide. Eur. J. Cancer. 2013, 49, 219–230.
|
[4] |
Wang, Y.; Xie, Y.; Oupický, D. Potential of CXCR4/CXCL12 chemokine axis in cancer drug delivery. Curr. Pharmacol. Rep. 2016, 2, 1–10.
|
[5] |
Smith, M.C.P.; Luker, K.E.; Garbow, J.R.; Prior, J.L.; Jackson, E.; Piwnica-Worms, D.; Luker, G.D. CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res. 2004, 64, 8604–8612.
|
[6] |
Peng, S.B.; Zhang, X.; Paul, D.; Kays, L.M.; Gough, W.; Stewart, J.; Uhlik, M.T.; Chen, Q.; Hui, Y.H.; Zamek-Gliszczynski, M.J.; Wijsman, J.A.; Credille, K.M.; Yan, L.Z. Identification of LY2510924, a novel cyclic peptide CXCR4 antagonist that exhibits antitumor activities in solid tumor and breast cancer metastatic models. Mol. Cancer Ther. 2015, 14, 480–490.
|
[7] |
Fouquet, G.; Guidez, S.; Richez, V.; Stoppa, A.M.; Le Tourneau, C.; Macro, M.; Gruchet, C.; Bobin, A.; Moya, N.; Syshenko, T.; Sabirou, F.; Levy, A.; Franques, P.; Gardeney, H.; Karlin, L.; Benboubker, L.; Ouali, M.; Vedovato, J.C.; Ferre, P.; Pavlyuk, M.; Attal, M.; Facon, T.; Leleu, X. Phase I dose-escalation study of F50067, a humanized anti-CXCR4 monoclonal antibody alone and in combination with lenalidomide and low-dose dexamethasone, in relapsed or refractory multiple myeloma. Oncotarget. 2018, 9, 23890–23899.
|
[8] |
Galsky, M.D.; Vogelzang, N.J.; Conkling, P.; Raddad, E.; Polzer, J.; Roberson, S.; Stille, J.R.; Saleh, M.; Thornton, D. A phase I trial of LY2510924, a CXCR4 peptide antagonist, in patients with advanced cancer. Clin. Cancer Res. 2014, 20, 3581–3588.
|
[9] |
Hainsworth, J.D.; Reeves, J.A.; Mace, J.R.; Crane, E.J.; Hamid, O.; Stille, J.R.; Flynt, A.; Roberson, S.; Polzer, J.; Arrowsmith, E.R. A randomized, open-label phase 2 study of the CXCR4 inhibitor LY2510924 in combination with sunitinib versus sunitinib alone in patients with metastatic renal cell carcinoma (RCC). Target. Oncol. 2016, 11, 643–653.
|
[10] |
Huang, W.; Chen, L.Q.; Kang, L.; Jin, M.J.; Sun, P.; Xin, X.; Gao, Z.G.; Bae, Y.H. Nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs. Adv. Drug Deliv. Rev. 2017, 115, 82–97.
|
[11] |
Ballarín-González, B.; Howard, K.A. Polycation-based nanoparticle delivery of RNAi therapeutics: adverse effects and solutions. Adv. Drug Deliv. Rev. 2012, 64, 1717–1729.
|
[12] |
Jiang, X.R.; Yu, X.Y.; Fan, J.H.; Guo, L.P.; Zhu, C.J.; Jiang, W.; Lu, S.H. RFT2 is overexpressed in esophageal squamous cell carcinoma and promotes tumorigenesis by sustaining cell proliferation and protecting against cell death. Cancer Lett. 2014, 353, 78–86.
|
[13] |
Bartmann, L.; Schumacher, D.; von Stillfried, S.; Sternkopf, M.; Alampour-Rajabi, S.; van Zandvoort, M.A.M.J.; Kiessling, F.; Wu, Z.J. Evaluation of riboflavin transporters as targets for drug delivery and theranostics. Front. Pharmacol. 2019, 10, 79.
|
[14] |
Caelen, I.; Kalman, A.; Wahlström, L. Biosensor-based determination of riboflavin in milk samples. Anal. Chem. 2004, 76, 137–143.
|
[15] |
Dong, D.W.; Xiang, B.; Gao, W.; Yang, Z.Z.; Li, J.Q.; Qi, X.R. pH-Responsive complexes using prefunctionalized polymers for synchronous delivery of doxorubicin and siRNA to cancer cells. Biomaterials. 2013, 34, 4849–4859.
|
[16] |
Thevenot, J.; Troutier, A.L.; David, L.; Delair, T.; Ladavière, C. Steric stabilization of lipid/polymer particle assemblies by poly(ethylene glycol)-lipids. Biomacromolecules. 2007, 8, 3651–3660.
|
[17] |
Ko, Y.T.; Bhattacharya, R.; Bickel, U. Liposome encapsulated polyethylenimine/ODN polyplexes for brain targeting. J. Control. Release. 2009, 133, 230–237.
|
[18] |
Aravindan, L.; Bicknell, K.A.; Brooks, G.; Khutoryanskiy, V.V.; Williams, A.C. Effect of acyl chain length on transfection efficiency and toxicity of polyethylenimine. Int. J. Pharm. 2009, 378, 201–210.
|
[19] |
Ewe, A.; Höbel, S.; Heine, C.; Merz, L.; Kallendrusch, S.; Bechmann, I.; Merz, F.; Franke, H.; Aigner, A. Optimized polyethylenimine (PEI)-based nanoparticles for siRNA delivery, analyzed in vitro and in an ex vivo tumor tissue slice culture model. Drug Deliv. And Transl. Res. 2017, 7, 206–216.
|
[20] |
Jayapaul, J.; Arns, S.; Bunker, M.; Weiler, M.; Rutherford, S.; Comba, P.; Kiessling, F. In vivo evaluation of riboflavin receptor targeted fluorescent USPIO in mice with prostate cancer xenografts. Nano Res. 2016, 9, 1319–1333.
|
[21] |
Thomas, T.P.; Choi, S.K.; Li, M.H.; Kotlyar, A.; Baker, J.R. Design of riboflavin-presenting PAMAM dendrimers as a new nanoplatform for cancer-targeted delivery. Bioorg. Med. Chem. Lett. 2010, 20, 5191–5194.
|
[22] |
Fu, T.; Li, Y.D.; Wang, Q.; Wang, Z.L.; Sun, Z.; Di, H.; Fan, W.J.; Liu, M.Y.; Wang, J.H. Overexpression of riboflavin transporter 2 contributes toward progression and invasion of glioma. NeuroReport. 2016, 27, 1167–1173.
|
[23] |
Tsvetkova, Y.; Beztsinna, N.; Jayapaul, J.; Weiler, M.; Arns, S.; Shi, Y.; Lammers, T.; Kiessling, F. Refinement of adsorptive coatings for fluorescent riboflavin-receptor-targeted iron oxide nanoparticles. Contrast Media Mol. Imaging. 2016, 11, 47–54.
|
[24] |
Chen, J.; Guo, Z.P.; Tian, H.Y.; Chen, X.S. Production and clinical development of nanoparticles for gene delivery. Mol. Ther. Methods Clin. Dev. 2016, 3, 16023.
|
[25] |
Petersen, H.; Kunath, K.; Martin, A.L.; Stolnik, S.; Roberts, C.J.; Davies, M.C.; Kissel, T. Star-shaped poly(ethylene glycol)-block-polyethylenimine copolymers enhance DNA condensation of low molecular weight polyethylenimines. Biomacromolecules. 2002, 3, 926–936.
|
[26] |
Anselmo, A.; Mazzon, C.; Borroni, E.M.; Bonecchi, R.; Graham, G.J.; Locati, M. Flow cytometry applications for the analysis of chemokine receptor expression and function. Cytom. Part A. 2014, 85, 292–301
|
[27] |
Kershaw, T.; Wavre-Shapton, S.T.; Signoret, N.; Marsh, M. Chapter 18 analysis of chemokine receptor endocytosis and intracellular trafficking. Methods Enzymol. 2009, 460, 357–377.
|
[28] |
Yagi, H.; Tan, W.F.; Dillenburg-Pilla, P.; Armando, S.; Amornphimoltham, P.; Simaan, M.; Weigert, R.; Molinolo, A.A.; Bouvier, M.; Gutkind, J.S. A synthetic biology approach reveals a CXCR4-G13-Rho signaling axis driving transendothelial migration of metastatic breast cancer cells. Sci. Signal. 2011, 4, ra60.
|
[29] |
Kang, N.; Choi, S.Y.; Kim, B.N.; Yeo, C.D.; Park, C.K.; Kim, Y.K.; Kim, T.J.; Lee, S.B.; Lee, S.H.; Park, J.Y.; Park, M.S.; Yim, H.W.; Kim, S.J. Hypoxia-induced cancer stemness acquisition is associated with CXCR4 activation by its aberrant promoter demethylation. BMC Cancer. 2019, 19, 148.
|
[30] |
Orimo, A.; Gupta, P.B.; Sgroi, D.C.; Arenzana-Seisdedos, F.; Delaunay, T.; Naeem, R.; Carey, V.J.; Richardson, A.L.; Weinberg, R.A. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005, 121, 335–348.
|
[31] |
Lapteva, N.; Yang, A.G.; Sanders, D.E.; Strube, R.W.; Chen, S.Y. CXCR4 knockdown by small interfering RNA abrogates breast tumor growth in vivo. Cancer Gene Ther. 2005, 12, 84–89.
|
[1] | Yajie Liu, Yu Wang, Jiajia Li, Xiaoqing Xu, Xinru Li. Preparation and evaluation of doxorubicin-luminespib co-loaded multivesicular liposomes [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(9): 736-742. |
[2] | Chuhang Zhou, Xinping Hu, Qi Liu, Leqi Wang, Yuanhang Zhou, Yao Jin, Yan Liu. Enhanced tumor-targeted delivery of anticancer drugs by folic acid-conjugated pH-sensitive polymeric micelles [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(9): 626-636. |
[3] | Kexiang Gao, Xiaoyan Liu, Yuanjun Zhu, Ye Liu, Yinye Wang. The influence of B55γ on the neuroprotective effect of W026B in t-MCAO mice [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(10): 711-718. |
[4] | Zhantao Li, Ai Liao, Man Liu, Shuang Zhang, Zhenhan Feng, Guangxue Wang, Jingru Wang, Meiqi Xu, Zhuoyue Li, Xiaochuan Duan, Yanli Hao, Xiuchai Zheng, Hui Li, Qin Na, Hua Zhang, Bilin Liu, Xuan Zhang. Synthesis of poly(amidoamine)-poly(ethyleneglycol)-poly(amidoamine) and preparation of its hydrogel solution containing doxorubicin [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(5): 316-328. |
[5] | Piaopiao Li, Yi Yan, Haitao Zhang, Ru Wang, Huhu Han, Jiancheng Wang. Treatment of cervical cancer by siRNA-loaded chitosan-coated calcium phosphate nanoparticles [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(8): 517-529. |
[6] | Yang Zou, Yao Jin, Yuanhang Zhou, Chuyu He, Yunqiang Deng, Shidi Han, Chuhang Zhou, Xinru Li, Yanxia Zhou, Yan Liu. Preparation and characterization of dual pH-sensitive polymer-doxorubicin conjugate micelles [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(8): 530-539. |
[7] | Yi Yan, Shihe Cui, Jing Sun, Piaopiao Li, Haitao Zhang, Jiancheng Wang. Novel cationic lipid with reduction-responsive cleavable hydrophobic tail for siRNA delivery [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(6): 383-396. |
[8] | Maoyuan Song, Yuanyuan Zhang, Wenxi Zhang, Guanghua Peng, Jiaxing Wang, Mengya Yin, Jiajia Li, Yajie Liu, Xinru Li. Preparation, characterization and evaluation of multi-component-loaded liposomes containing Tat-TOS, phospholipase D inhibitor and doxorubicin [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(5): 332-341. |
[9] | Jiongxi Lei, Shuangchen Cong, Maoyuan Song, Wenxi Zhang, Guanghua Peng, Yuanyuan Zhang, Mengya Yin, Jiaxing Wang, Jiajia Li, Xinru Li. Preparation, characterization and evaluation of liposomal doxorubicin and harmine that show synergistic activity in vitro [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(9): 666-674. |
[10] | Mengyi Yang, Jing Sun, Chao Wang, Yanfen Zhang, Lihe Zhang, Zhenjun Yang. Transfection of 3′,3′′-bis-peptide-siRNA conjugate by cationic lipoplexes mixed with a neutral cytosin-1-yl-lipid [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(10): 719-726. |
[11] | Chong Qiu, Shihe Cui, Jing Sun, Jiancheng Wang. In vitro comparative evaluation of three CLD/siRNA nanoplexes prepared by different processes [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(9): 660-668. |
[12] | Jialin Li, Liying Guo, Xiaoya Qin, Tianyuan Fan. A simple and sensitive gradient elution liquid chromatography with tandem mass spectrometry (LC-MS/MS) method for the quantification of doxorubicin in rabbit plasma [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(8): 576-581. |
[13] | Yiping Diao, Jing Sun, Mengyi Yang, Bo Xu, Lihe Zhang, Zhenjun Yang. Evaluation of the intracellular trafficking of siRNAs in A375 cells by confocal laser scanning microscopy [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(12): 859-868. |
[14] | Qingdan Xue, Aixia Ju, Yuhong Kang, Chunyu Zheng, Qiuhong Li. Effects of co-administraton of neferine and doxorubicin on the pharmacokinetics of doxorubicin [J]. Journal of Chinese Pharmaceutical Sciences, 2015, 24(4): 225-230. |
[15] | Xiaoyou Wang, Xianhui Chen, Xiucong Yang, Bing He, Wenbing Dai, Xueqing Wang, Jiancheng Wang, Xuan Zhang, Qiang Zhang. A mechanism study on the tamoxifen-mediated cellular internalization of liposomes [J]. Journal of Chinese Pharmaceutical Sciences, 2014, 23(9): 595-600. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||