[1] Zager, R.A.; Johnson, A.C.; Lund, S.; Hanson, S. Acute renal failure: determinants and characteristics of the injury-induced hyperinflammatory response. Am. J. Physiol. Renal Physiol. 2006, 291, F546-F556.
[2] Korkeila, M.; Ruokonen, E.; Takala, J. Costs of care, long-term prognosis and quality of life in patients requiring renal replacement therapy during intensive care. Intensive Care Med. 2000, 26, 1824-1831.
[3] Metnitz, P.G.; Krenn, C.G.; Steltzer, H.; Lang, T.; Ploder, J.; Lenz, K.; Le Gall, J.R.; Druml, W. Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit. Care Med. 2002, 30, 2051-2058.
[4] Ricci, Z.; Polito, A.; Polito, A.; Ronco, C. The implications and management of septic acute kidney injury. Nat. Rev. Nephrol. 2011, 7, 218-225.
[5] Chowdhury, P.; Sacks, S.H.; Sheerin, N.S. Toll-like receptors TLR2 and TLR4 initiate the innate immune response of the renal tubular epithelium to bacterial products. Clin. Exp. Immunol. 2006, 145, 346-356.
[6] Yang, H.; Cheng, X.; Yang, Y.L.; Wang, Y.H.; Du, G.H. Ramulus Cinnamomi extract attenuates neuroinflammatory responses via downregulating TLR4/MyD88 signaling pathway in BV2 cells. Neural. Regen Res. 2017, 12, 1860-1864.
[7] Chuang, C.H.; Yang, C.K.; Wu, P.H.; Zhang, Y.; Yang, P.J. Acute renal injury induced by endotoxic shock in rats is alleviated via PI3K/Nrf2 pathway. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 5394-5401.
[8] Chen, Q.Y.; Wang, C.Q.; Yang, Z.W.; Tang, Q.; Tan, H.R.; Wang, X.; Cai, S.Q. Differences in anti-inflammatory effects between two specifications of Scutellariae Radix in LPS-induced macrophages in vitro. Chin. J. Nat. Med. 2017, 15, 515-524.
[9] Park, B.S.; Lee, J.O. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med. 2013, 45, e66.
[10] Zhang, B.F.; Wang, P.F.; Cong, Y.X.; Lei, J.L.; Wang, H.; Huang, H.; Han, S.; Zhuang, Y. Anti-high mobility group box-1 (HMGB1) antibody attenuates kidney damage following experimental crush injury and the possible role of the tumor necrosis factor-α and c-Jun N-terminal kinase pathway. J. Orthop. Surg. Res. 2017, 12, 110.
[11] Deuchars, S.A.; Atkinson, L.; Brooke, R.E.; Musa, H.; Milligan, C.J.; Batten, T.F.; Buckley, N.J.; Parson, S.H.; Deuchars, J. Neuronal P2X7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems. J. Neurosci. 2001, 21, 7143-7152.
[12] Turner, C.M.; Tam, F.W.; Lai, P.C.; Tarzi, R.M.; Burnstock, G.; Pusey, C.D.; Cook, H.T.; Unwin, R.J. Increased expression of the pro-apoptotic ATP-sensitive P2X7 receptor in experimental and human glomerulonephritis. Nephrol. Dial. Transplant. 2007, 22, 386-395.
[13] Wang, Y.H.; Liu, Y.H.; He, G.R.; Lv, Y.; Du, G.H. Esculin improves dyslipidemia, inflammation and renal damage in streptozotocin-induced diabetic rats. BMC Complement Altern. Med. 2015, 15, 402.
[14] Niu, X.F.; Wang, Y.; Li, W.F.; Zhang, H.L.; Wang, X.M.; Mu, Q.L.; He, Z.H.; Yao, H. Esculin exhibited anti-inflammatory activities in vivo and regulated TNF-α and IL-6 production in LPS-stimulated mouse peritoneal macrophages in vitro through MAPK pathway. Int. Immunopharmacol. 2015, 29, 779-786.
[15] Zhang, L.; Sun, D.D.; Bao, Y.; Shi, Y.; Cui, Y.; Guo, M.H. Nerolidol protects against LPS-induced acute kidney injury via inhibiting TLR4/NF-κB signaling. Phytother. Res. 2017, 31, 459-465.
[16] Mei, S.Q.; Livingston, M.; Hao, J.L.; Li, L.; Mei, C.L.; Dong, Z. Autophagy is activated to protect against endotoxic acute kidney injury. Sci. Rep. 2016, 6, 22171.
[17] Xiao, C. Xiao-Xu-Ming decoction extract alleviates LPS-induced neuroinflammation associated with down-regulating TLR4/MyD88 signaling pathway in vitro and in vivo. J. Chin. Pharm. Sci. 2019, 28, 88-99.
[18] Cheng, X.; Yang, Y.L.; Yang, H.; Wang, Y.H.; Du, G.H. Kaempferol alleviates LPS-induced neuroinflammation and BBB dysfunction in mice via inhibiting HMGB1 release and down-regulating TLR4/MyD88 pathway. Int. Immunopharmacol. 2018, 56, 29-35.
[19] Ostermann, M.; Chang, R.W.S. Acute kidney injury in the intensive care unit according to RIFLE. Crit. Care. Med. 2007, 35, 1837-1843.
[20] Wan, L.; Bagshaw, S.M.; Langenberg, C.; Saotome, T.; May, C.; Bellomo, R. Pathophysiology of septic acute kidney injury: what do we really know? Crit. Care. Med. 2008, 36, S198-S203.
[21] Doi, K.; Leelahavanichkul, A.; Yuen, P.S.; Star, R.A. Animal models of Sepsis and Sepsis-induced kidney injury. J. Clin. Invest. 2009, 119, 2868-2878.
[22] Chvojka, J.; Sýkora, R.; Karvunidis, T.; Raděj, J.; Kroužecký, A.; Novák, I.; Matějovič, M. New developments in septic acute kidney injury. Physiol. Res. 2010, 59, 859-869.
[23] Chertow, G.M.; Burdick, E.; Honour, M.; Bonventre, J.V.; Bates, D.W. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol. 2005, 16, 3365-3370.
[24] Cruz, D.N.; Bellomo, R.; Ronco, C. Clinical effects of polymyxin B-immobilized fiber column in septic patients. Contrib. Nephrol. 2007, 156, 444-451.
[25] Prowle, J.R.; Kolic, I.; Purdell-Lewis, J.; Taylor, R.; Pearse, R.M.; Kirwan, C.J. Serum creatinine changes associated with critical illness and detection of persistent renal dysfunction after AKI. Clin. J. Am. Soc. Nephrol. 2014, 9, 1015-1023.
[26] Fu, H.Y.; Hu, Z.S.; Di, X.W.; Zhang, Q.H.; Zhou, R.B.; Du, H.Y. Tenuigenin exhibits protective effects against LPS-induced acute kidney injury via inhibiting TLR4/NF-κB signaling pathway. Eur. J. Pharmacol. 2016, 791, 229-234.
[27] Kang, K.P.; Kim, D.H.; Jung, Y.J.; Lee, A.S.; Lee, S.; Lee, S.Y.; Jang, K.Y.; Sung, M.J.; Park, S.K.; Kim, W. Alpha-lipoic acid attenuates cisplatin-induced acute kidney injury in mice by suppressing renal inflammation. Nephrol. Dial. Transplant. 2009, 24, 3012-3020.
[28] Tan, S.F.; Wang, G.F.; Guo, Y.P.; Gui, D.K.; Wang, N.S. Preventive effects of a natural anti-inflammatory agent, astragaloside IV, on ischemic acute kidney injury in rats. Evid. Based Complement. Alternat. Med. 2013, 2013, 284025.
[29] Kashiwada, M.; Shirakata, Y.; Inoue, J.I.; Nakano, H.; Okazaki, K.; Okumura, K.; Yamamoto, T.; Nagaoka, H.; Takemori, T. Tumor necrosis factor receptor-associated factor 6 (TRAF6) stimulates extracellular signal-regulated kinase (ERK) activity in CD40 signaling along a ras-independent pathway. J. Exp. Med. 1998, 187, 237-244.
[30] Hämäläinen, M.; Nieminen, R.; Vuorela, P.; Heinonen, M.; Moilanen, E. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators. Inflamm. 2007, 2007, 45673.
[31] Vonend, O.; Turner, C.M.; Chan, C.M.; Loesch, A.; Carmen Dell’Anna, G.; Srai, K.S.; Burnstock, G.; Unwin, R.J. Glomerular expression of the ATP-sensitive P2X7 receptor in diabetic and hypertensive rat models. Kidney Int. 2004, 66, 157-166.
[32] Zhao, J.J.; Wang, H.Y.; Dai, C.; Wang, H.Y.; Zhang, H.; Huang, Y.F.; Wang, S.; Gaskin, F.; Yang, N.S.; Fu, S.M. P2X7 blockade attenuates murine lupus nephritis by inhibiting activation of the NLRP3/ASC/caspase 1 pathway. Arthritis. Rheum. 2013, 65, 3176-3185.
[33] Thakur, V.; Nargis, S.; Gonzalez, M.; Pradhan, S.; Terreros, D.; Chattopadhyay, M. Role of glycyrrhizin in the reduction of inflammation in diabetic kidney disease. Nephron. 2017, 137, 137-147.
[34] Zhang, H.; Zhang, R.; Chen, J.; Shi, M.; Li, W.; Zhang, X.C. High mobility group Box1 inhibitor glycyrrhizic acid attenuates kidney injury in streptozotocin-induced diabetic rats. Kidney Blood Press. Res. 2017, 42, 894-904.
[35] Akira, S.; Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 2004, 4, 499-511.
[36] Brown, J.; Wang, H.; Martin, M.; Martin, M. TLR-signaling networks an integration of adaptor molecules, kinases, and cross-talk. J. Dental. Res. 2011, 90, 417-427.
[37] O’Neill, L.A. The role of MyD88-like adapters in Toll-like receptor signal transduction. Biochem. Soc. Trans. 2003, 31, 643-647.
[38] Kurashima, Y.; Kiyono, H. New era for mucosal mast cells: their roles in inflammation, allergic immune responses and adjuvant development. Exp. Mol. Med. 2014, 46, e83.
[39] Taylor, S.R.; Turner, C.M.; Elliott, J.I.; McDaid, J.; Hewitt, R.; Smith, J.; Pickering, M.C.; Whitehouse, D.L.; Cook, H.T.; Burnstock, G.; Pusey, C.D.; Unwin, R.J.; Tam, F.W. P2X7 deficiency attenuates renal injury in experimental glomerulonephritis. J. Am. Soc. Nephrol. 2009, 20, 1275-1281. |