[1] Riahifard, N.; Mozaffari, S.; Aldakhil, T.; Nunez, F.; Alshammari, Q.; Alshammari, S.; Yamaki, J.; Parang, K.; Tiwari, R.K. Design, synthesis, and evaluation of amphiphilic cyclic and linear peptides composed of hydrophobic and positively-charged amino acids as antibacterial agents. Molecules. 2018, 23, E2722.
[2] Ageitos, J.M.; Sánchez-Pérez, A.; Calo-Mata, P.; Villa, T.G. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem. Pharmacol. 2017, 133, 117-138.
[3] Cardoso, M.H.; Cândido, E.S.; Chan, L.Y.; Der Torossian Torres, M.; Oshiro, K.G.N.; Rezende, S.B.; Porto, W.F.; Lu, T.K.; de la Fuente-Nunez, C.; Craik, D.J.; Franco, O.L. A computationally designed peptide derived from escherichia coli as a potential drug template for antibacterial and antibiofilm therapies. ACS Infect Dis. 2018, 4, 1727-1736.
[4] De, A.B.; Riool, M.; Cordfunke, R.A.; Malanovic, N.; De, L.B.; Koning, R.I.; Ravensbergen, E.; Franken, M.; Van, T.D.H; Boekema, B.K. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci. Transl. Med. 2018, 10, 4044.
[5] Gerhard, U.; Bernd, W.; Jörn, K.; Ulrike, Z.; Jürgen, H.; Friedrich, P.; Margitta, R.; Henrik, S.; Michael, S.; Jan, L. Antimicrobial peptides of the Cecropin-family show potent antitumor activity against bladder cancer cells. BMC Urology. 2008, 8, 5.
[6] Vargas Casanova, Y.; Rodríguez Guerra, J.A.; Umaña Pérez, Y.A.; Leal Castro, A.L.; Almanzar Reina, G.; García Castañeda, J.E.; Rivera Monroy, Z.J. Antibacterial synthetic peptides derived from bovine lactoferricin exhibit cytotoxic effect against MDA-MB-468 and MDA-MB-231 breast cancer cell lines. Molecules. 2017, 22, E1641.
[7] Bahar, A.; Ren, D.C. Antimicrobial peptides. Pharmaceuticals. 2013, 6, 1543-1575.
[8] Matsuzaki, K.; Mitani, Y.; Akada, K.Y.; Murase, O.; Yoneyama, S.; Zasloff, M.; Miyajima, K. Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa. Biochemistry. 1998, 37, 15144-15153.
[9] Kim, M.K.; Kang, H.K.; Ko, S.J.; Hong, M.J.; Bang, J.K.; Seo, C.H.; Park, Y. Mechanisms driving the antibacterial and antibiofilm properties of Hp1404 and its analogue peptides against multidrug-resistant Pseudomonas aeruginosa. Sci. Rep. 2018, 8, 1763.
[10] Resende, J.M.; Verly, R.M.; Aisenbrey, C.; Cesar, A.; Bertani, P.; Piló-Veloso, D.; Bechinger, B. Membrane interactions of phylloseptin-1, -2, and -3 peptides by oriented solid-state NMR spectroscopy. Biophys. J. 2014, 107, 901-911.
[11] Afonin, S.; Glaser, R.W.; Sachse, C.; Salgado, J.; Wadhwani, P.; Ulrich, A.S. (19)F NMR screening of unrelated antimicrobial peptides shows that membrane interactions are largely governed by lipids. Biochim. Biophys. Acta. 2014, 1838, 2260-2268.
[12] Bechinger, B. Detergent-like properties of magainin antibiotic peptides: a 31P solid-state NMR spectroscopy study. Biochim. Biophys. Acta. 2005, 1712, 101-108.
[13] Georgescu, J.; Munhoz, V.H.; Bechinger, B. NMR structures of the histidine-rich peptide LAH4 in micellar environments: membrane insertion, pH-dependent mode of antimicrobial action, and DNA transfection. Biophys. J. 2010, 99, 2507-2515.
[14] Perrone, B.; Miles, A.J.; Salnikov, E.S.; Wallace, B.A.; Bechinger, B. Lipid interactions of LAH4, a peptide with antimicrobial and nucleic acid transfection activities. Eur. Biophys. J. 2014, 43, 499-507.
[15] Wolf, J.; Aisenbrey, C.; Harmouche, N.; Raya, J.; Ber-tani, P.; Voievoda, N.; Süss, R.; Bechinger, B. Ph-dependent membrane interactions of the histidine-rich cell-penetrating peptide LAH4-L1. Biophys. J. 2017, 113, 1290-1300.
[16] Vasconcelos, L.; Lehto, T.; Madani, F.; Radoi, V.; Hällbrink, M.; Vukojević, V.; Langel, Ü. Simultaneous membrane interaction of amphipathic peptide monomers, self-aggregates and cargo complexes detected by fluorescence correlation spectroscopy. Biochim. Biophys. Acta Biomembr. 2018, 1860, 491-504.
[17] Abou-Zied, O.K.; Barbour, A.; Al-Sharji, N.A.; Philip, K. Elucidating the mechanism of peptide interaction with membranes using the intrinsic fluorescence of tryptophan: perpendicular penetration of cecropin B-like peptides into Pseudomonas aeruginosa. RSC Adv. 2015, 5, 14214-14220.
[18] Wu, M.; Maier, E.; Benz, R.; Hancock, R.E. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry. 1999, 38, 7235-7242.
[19] Bechinger, B. Towards membrane protein design: pH-sensitive topology of histidine-containing polypeptides. J. Mol. Biol. 1996, 263, 768-775.
[20] Vogt, T.C.; Bechinger, B. The interactions of histidine-containing amphipathic helical peptide antibiotics with lipid bilayers. The effects of charges and pH. J. Biol. Chem. 1999, 274, 29115-29121.
[21] Kichler, A.; Leborgne, C.; März, J.; Danos, O.; Bechinger, B. Histidine-rich amphipathic peptide antibiotics promote efficient delivery of DNA into mammalian cells. Proc. Natl. Acad. Sci. USA. 2003, 100, 1564-1568.
[22] Otieno, S.A.; Hanz, S.Z.; Chakravorty, B.; Zhang, A.Q.; Klees, L.M.; An, M.; Qiang, W. PH-dependent thermodynamic intermediates of pHLIP membrane insertion determined by solid-state NMR spectroscopy. Proc. Natl. Acad. Sci. USA. 2018, 115, 12194-12199.
[23] Mozsolits, H.; Wirth, H.J.; Werkmeister, J.; Aguilar, M.I. Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonance. Biochim. Biophys. Acta. 2001, 1512, 64-76.
[24] Mozsolits, H.; Aguilar, M.I. Surface plasmon resonance spectroscopy: an emerging tool for the study of peptide-membrane interactions. Biopolymers. 2002, 66, 3-18.
[25] Rončević, T.; Krce, L.; Gerdol, M.; Pacor, S.; Benincasa, M.; Guida, F.; Aviani, I.; Čikeš-Čulić, V.; Pallavicini, A.; Maravić, A.; Tossi, A. Membrane-active antimicrobial peptide identified in Rana arvalis by targeted DNA sequencing. Biochim. Biophys. Acta Biomembr. 2019, 1861, 651-659.
[26] Janzen, E.G.; Burns, S.P. An ESR method for determination of serum lipase activity. Anal. Lett. 1977, 10, 1009-1017.
[27] Hung, S.C.; Wang, W.; Chan, S.I.; Chen, H.M. Membrane lysis by the antibacterial peptides cecropins B1 and B3: A spin-label electron spin resonance study on phospholipid bilayers. Biophys. J. 1999, 77, 3120-3133.
[28] Arora, A.; Williamson, I.M.; Lee, A.G.; Marsh, D. Lipid-protein interactions with cardiac phospholamban studied by spin-label electron spin resonance. Biochemistry. 2003, 42, 5151-5158.
[29] Ghibaudi, E.; Boscolo, B.; Inserra, G.; Laurenti, E.; Traversa, S.; Barbero, L.; Ferrari, R.P. The interaction of the cell-penetrating peptide penetratin with heparin, heparansulfates and phospholipid vesicles investigated by ESR spectroscopy. J. Pept. Sci. 2005, 11, 401-409.
[30] Stoll, S.; Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006, 178, 42-55.
[31] Steigmiller, S.; Börsch, M.; Gräber, P.; Huber, M. Distances between the b-subunits in the tether domain of F(0)F(1)-ATP synthase from E. coli. Biochim. Biophys. Acta. 2005, 1708, 143-153.
[32] Sepkhanova, I.; Drescher, M.; Meeuwenoord, N.J.; Limpens, R.W.; Koning, R.I.; Filippov, D.V.; Huber, M. Monitoring alzheimer amyloid peptide aggregation by EPR. Appl. Magn. Reson. 2009, 36, 209-222.
[33] Marquette, A.; Mason, A.J.; Bechinger, B. Aggregation and membrane permeabilizing properties of designed histidine-containing cationic linear peptide antibiotics. J. Pept. Sci. 2008, 14, 488-495.
[34] Aisenbrey, C.; Bechinger, B. Molecular packing of amphipathic peptides on the surface of lipid membranes. Langmuir. 2014, 30, 10374-10383. |