[1] Global Status Report on Noncommunicable disease. 2014. World Health Organization.
[2] Emily, J.G.; Derek, L.R.; Rebeca, F.; Irini, M.A.; Anupma, N.; Jennifer, L.T.; Nina, A.B. Metabolic syndrome and pre-diabetes contribute to racial disparities in breast cancer outcomes: hypothesis and proposed pathways. Diabetes Metab. Res. Rev. 2016, 32, 745-753.
[3] Scott, M.G. Pre-Diabetes, Metabolic Syndrome, and Cardiovasular Risk. J. Am. Coll. Cardiol. 2012, 59, 635-643.
[4] David, B.S. PPARγ as a metabolic regulator: insights from genomics and pharmacology. Expert Rev. Mol. Med. 2005, 7, 1-16.
[5] Shigeki, S.; Kyoko, O.; Koichi, K.; Shigeki, I.; Maki, I.; Takehiro, S.; Yoshiaki, K.; Yasushi, K.; Koji, M. Design, Synthesis, and Structure-Activity Relationship Studies of Novel 2,4,6,-Trisubstituted-5-pyrimidinecarboxylic Acids as Peroxisome Proliferator-Activated Receptor γ (PPARγ) Partial Agonists with Comparable Antidiabetic Efficacy to Rosiglitazone. J. Med. Chem. 2010, 53, 5012-5024.
[6] Brad, R.H. Peroxisome Proiferator-Activated Receptor α/γ Dual Agonists for the Treatment of Type 2 Diabetes. J. Med. Chem. 2004, 47, 4118-4127.
[7] Ouliana, Z.; Stephane, P.; Niko, M.; Daniel, B.; Jorge, P. Peroxisome Proliferator-activated Recptors. Curr. Atheroscler. Rep. 2002, 4, 59-64.
[8] Limei, W.; Birgit, W.; Eva-Maria, P.W.; Martina, B.; Xin, L.; Clemens, M.; Tina, B.; Stefan, S.; Judith, M.R.; Elke, H.H.; Daniela, S.; Brigitte, K.; Rudolf, B.; Hermann, S.; Verena, M.D.; Atanas, G.A. Natural product agonists of peroxisome proliferator-activated receptor gama (PPARγ): a review. Biochem. Pharmacol. 2014, 92, 73-89.
[9] Shirin, K.; Ariela, L.; Arie, G.; Hanoch, S.; Shlomo, S. Activation of PPARδ: from computer modeling to biological effects. British J. Pharmacology. 2014, 172, 754-770.
[10] Benjamin, P.F.; Steven, M. Modulators of the Nuclear Receptor Retinoic Acid Receptor-Related Orphan Receptor-γ (RORγ or RORc). J. Med. Chem. 2014, 57, 5871-5892.
[11] Mani, R.M.; Michael, H.; Miriam, S.B.; Artem, C.; Paul, S.R. Orphan nuclear receptors as drug targets for the treatment of prostate and breast cancers. Cancer Treat. Rev. 2014, 40, 1137-1152.
[12] Li, S.Z.; Shu, Q.W.; Wei, R.X.; Run, L.W.; Jing, F.W. Scffold-Based Pan-Agonist Design for the PPARα, PPARβ and PPARγ Receptors. PLoS One. 2012, 7, 48453.
[13] Antonio, C.; Marco, G.; Mariagiovanna, P.; Mario, D.R.; Luca, P.; Giuseppe, F.; Antonio, L.; Paolo, T.; Giuseppe, C.; Antonio, L.; Federica, G.; Maurizio, C.; Fulvio, L. Molecular determinants for nuclear receptors selectivity: Chemometric analysis, dockings and site-directed mutagenesis of dual peroxisome proliferator-activated receptors α/γ agonists. Eur. J. Med. Chem. 2013, 63, 321-332.
[14] Sergio, H.F.; Juan, J.R.E.; Samuel, E.S.; Julio, C.A.P.; Rubén, R.R.; Francisco, J.A.A.; Jesús V.H.R.; Hermenegilda, M.D.; Daniel, D.C.; Gabriel, N.V. Discovery of Thiazolidine-2,4-Dione/Biphenylcarbonitrile Hybrid as Dual PPARα/γ Modulator with Antidiabetic Effect: In vitro, In Silico and In vivo Approaches. Chem. Biol. Drug Des. 2013, 81, 474-483.
[15] Reeba, K.V.; Jagadheshan, H.; Juluri, S.; Cynthia, G.; Ravi, K.; Babu, P.M.; Ramanujam, R.; Ranjan, C. DRF2655: A unique molecule that reduces body weight and ameliorates metabolic abnormalities. Obes. Res. 2003, 11, 2.
[16] Cheng, X.; Li, L.W.; Hong, Y.L.; Xing, B.Z.; Ying, L.C.; Song, L. C333H, a novel PPARα/γ dual agonist, has beneficial effects on insulin resistance and lipid metabolism. Acta Pharmacol. Sin. 2006, 27, 223-228.
[17] Federica, G.; Marco, G.; Nico, M.; Omar, M.; Uliano, G.; Gianpaolo, R.; Adriana, M.; Gaia, C.; Antonio, L.; Fulvio, L.; Giorgio, P.; Antonio, L.; Donatella, C.; Emma, D.F.; Krister, B.; Maurizio, C. LT175 is a novel PPARα/γ ligand with potent insulin-sensitizing effects and reduced adipogenic properties. J. Biol. Chem. 2014, 289, 6908-6920.
[18] Laghezza, A.; Pochetti, G.; Lavecchia, A.; Fracchiolla, G.; Faliti, S.; Piemontese, L.; Di Giovanni, C.; Iacobazzi, V.; Infantino, V.; Montanari, R.; Capelli, D.; Tortorella, P.; Loiodice, F. New 2-(Aryloxy)-3-phenylpropanoic Acids as Peroxisome Proliferator-Activated Receptor α/γ Dual Agonists Able To Upregulate Mitochondrial Carnitine Shuttle System Gene Expression. J. Med. Chem. 2012, 56, 60-72.
[19] Mukul, R.J.; Suresh, R.G.; Chitrang, T.; Bibhuti, B.; Akshyaya, R.; Geeta, V.; Purvi, V.; Ramchandra, R.; Pankaj, R.P. Saroglitazar. a novel PPARα/γ agonist with predominant PPARα activity, shows lipid-lowering an insulin-sensitizing effects in preclinical models. Pharma. Res. Perspect. 2015, 3, e00136.
[20] Aravind, S.; Banshi, S.; Bhavana, S. Saroglitazar for the treatment of hypertriglyceridemia in patients with type 2 diabetes: current evidence. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2015, 8, 189-196.
[21] Rajendra, H.J.; Kevinkumar, K.; Mukul, R.J.; Harilal, P. Pharmacokinetics, safety, and Tolerability of Saroglitazar (ZYH1), a Predominantly PPARα Agonist with Moderate PPARγ Agonist Activity in Healthy Human Subjects. Clin. Drug Investig. 2013, 33, 809-816.
[22] Letizia, G.; Alessandra, D.; Antonella G.; Alessandra, A.; Barbara, D.F.; Marialuigia, F.; Pasquale, L.; Cristina, M.; Rosa, A. Synthesis and structure-activity relationships of fibrate-based analogues inside PPARs. Bioorg. Med. Chem. Lett. 2012, 22, 7662-7666.
[23] Jademilson, C.D.S.; Amanda, B.; Letizia, G.; Alessandra, A.; Barbara, D.F.; Rosa, A.; Igor, P. Different binding and recognition modes of GL479, a dual agonist of Peroxisome Proliferator-Activated Receptor α/γ. J. Struct. Biol. 2015, 191, 332-340.
[24] Min, H.P.; Ji, Y.P.; Hye, J.L.; Dae, H.K.; Daeui, P.; Hyoung, O.J.; Chan, H.P.; Pusoon, C.; Hyung, R.M.; Hae, Y.C. Potent Anti-Diabetic Effects of MHY908, a Newly Synthesized PPARα/γ Dual Agonist in db/db Mice. PLoS One. 2013, 8, e78815.
[25] Yoshihiro, S.; Katsuji, K.; Mitsuhiro, Y.; Kenji, Y.; Kiyoshi, C.; Hiromichi, T.; Chiyuki, A.; Mayumi, O.; Mina, N.; Hideo, K.; Yoshimasa, K.; Hiroyuki, U. Synthesis and Structure-Activity Relationships of Novel Zwitterionic Compounds as Peroxisome Proliferator Activated Receptor α/γ Dual Agonists with Improved Physicochemical Properties. Chem. Pharm. Bull. 2013, 61, 1248-1263.
[26] Yoshihiro, S.; Katsuji, K.; Mitsuhiro, Y.; Hideo, K.; Hiroyuki, U. Design, synthesis and evaluation of novel zwitterionic compounds as PPARα/γ dual agonists. Bioorg. Med. Chem. Lett. 2012, 22, 7075-7079.
[27] Yoshihiro, S.; Toshimasa, Y.; Masato, I.; Miki, O.I.; Ryo, N.; Yuki, O.; Yoshichika, Y.; Koichiro, T.; Kohjiro, U.; Takashi, K. A Novel Peroxisome Proliferator-activated Receptor (PPAR) α Agonist and PPARγ Antagonist, Z-551, Ameliorates High-fat Diet-induces Obesity and Metbolic Disorders in Mice. J. Biol. Chem. 2015, 290, 14567-14581.
[28] Danny, I.; Julia, W.; Arun, J.S. Treatment Options for Nonalcoholic Steatohepatitis. Expert Opin. Drug Saf. 2017, 1474-0338.
[29] Remy, H.; Lesley, J.M.; Bertrand, C.; Benoit, N.; Géraldine, R.; Philippe, D.; Valérie, D.; Dean, W.H.; Bart, S. The dual peroxisome proliferator-activated receptor alpha/delta agonist GFT505 exerts anti-diabetic effects in db/db mice without peroxisome proliferator-activated receptor gamma-associated adverse cardiac effects. Diabetes Vasc. Dis. Re. 2014, 11, 440-447.
[30] Hong, C.; Beatriz, D.; Ling, Q.; Xianglin, R.; Shari, L.C.; Bryan, B.; Brian, R. B.; Jesper, G.
Cevoglitazar, a Novel Peroxisome Proliferator-Activated Receptor-α/γ Dual Agonist, Potently Reduces Food Intake and Body Weight in Obese Mice and Cynomolgus Monkeys. Endocrinology. 2010, 151, 3115-3124.
[31] Kazuya, O.; Satoru, A.; Kenji, T.; Masaki, F.; Michiko, S.; Hikaru, K.; Masayasu, K.; Hiroaki, S. 2-Acyl-tetra-hydroisoquinoline-3-carboxylic Acids: Lead Compounds with Triple Actions, Peroxisome Proliferator-Activated Receptor α/γ Agonist and Protein-Tyrosine Phosphatase 1 B Inhibitory Activities. Chem. Pharm. Bull. 2011, 59, 876-879.
[32] Hee, O.H.; Jong, S.K.; Seung, H. K.; Ok, P.K.; Kyoung, H.K.; Sang, K.J.; Gwong, H.C.; Hyeon, J.Y.; Geun, T.K. Design and Synthesis of Oxime Ethers of β-Oxo-γ-phenylbutanoic Acids as PPARα and-γ Dual Agonists. B. Kor. Chem. Soc. 2012, 33, 1979-1982.
[33] Fresno, N.; Macias-Gonzalez, M.; Torres-Zaguirre, A.; Romero-Cuevas, M.; Sanz-Camacho, P.; Elguero, J.; Pavon, F.J.; Rodriguez, D.F.; Goya, P.; Perez-Fernandez, R. Novel Oxazolidinone-Based Peroxisome Proliferator Activated Receptor Agonists: Molecular Modeling, Synthesis, and Biological Evaluatioin. J. Med. Chem. 2015, 58, 6639-6652.
[34] Shogo, O.; Ryuta, S.; Tomomi, N.Y.; Minoru, I.; Makoto, M.; Yuichi, H.; Takao, Y. Structure-activity relationship studies of non-carboxylic acid peroxisome proliferator-activated receptor α/δ (PPARα/δ) dual agonists. Bioorg Med. Chem. Lett. 2016, 24, 5455-5461.
[35] Ryuta, S.; Shogo, O.; Tomomi, N.Y.; Minoru, I.; Makoto, M.; Yuichi, H.; Takao, Y. Switching subtype-selectivity: Fragment replacement strategy affords novel class of peroxisome proliferator-activated receptor α/δ (PPARα/δ) dual agonists. Bioorg Med. Chem. Lett. 2017, 27, 3131-3134.
[36] Daichi, E.; Toshimasa, I.; Yui, A.; Tomoko, S.; Keiko, Y. 17-OxoDHA is a PPARα/γ dual covalent modifier and agonist. Acs. Chem. Boil. 2016, 11, 2447-2455.
[37] Vinicius, G.M.; Marie, T.; Alessandro, S.N.; Kathia, M.H. Struture-Based Virtual Screening and Discovery of New PPARδ/γ Dual Agonist and PPARδ and PPARγ Agonists. PLoS One. 2015, 10, e0118790.
[38] Ying, M.; Shu, Q.W.; Wei, R.X.; Run, L.W.; Kuo, C.C. Design Novel Dual Agonists for Treating Type-2 Diabetes by Targeting Peroxisome Proliferator-Activated Receptors with Core Hopping Approach. PLoS One. 2012, 7, e38546.
[39] Lei, L.; Ying, M.; Run, L.W.; Wei, R.X.; Shu, Q.W.; Kuo, C.C. Find novel dual-agonist drugs for treating type 2 diabetes by means of cheminformatics. Drug Des. Dev. Ther. 2013, 7, 279-288.
[40] Nobuyasu, M.; Kanae, G.; Hiroyuki, M.; Munekazu, I.; Teruo, K.; Nobuyuki, T.; Yukihiro, A.; Hideki, T. γ-Mangostin from Garcinia Mangostana Pericarps as a Dual Agonist That Activates Both PPARα and PPARδ. Biosci. Bio. Biochem. 2013, 77, 2430-2435.
[41] Li, F.; Huan, L.; Zhijian, X.; Zhuo, Y.; Guoxin, D.; Yu, Z.; Lijing, Y.; Kaifeng, H.; Weiliang, Z.; Qingchun, T.; Kaixian, C.; Fujiang, G.; Cheng, H.; Yiming, L. Bavachinin, as a novel natural pan-PPAR agonist, exhibits unique synergistic effects with synthetic PPAR-γ and PPAR-α agonists on carbohydrate and lipid metabolism in db/db and diet-induced obese mice. Diabetologia. 2016, 59, 1276-1286.
[42] WooJung, L.; Goo, Y.; Min, C. K.; Hak, C. K.; Gyu-Un, B.; Young, K.K.; Su-Nam, K. 5,7-Dihydroxy-6-geranylflavanone improves insulin sensitivity through PPARα/γ dual activation. Int. J. Mol. Med. 2016, 37, 1397-1404.
[43] Wang, X.; Wang, G.; Shi, Y.; Sun, L.; Gorczynski, R.; Li, Y.J.; Xu, Z.; Spaner, D.E. PPAR-delta promotes survival of breast cancer cells in harsh metabolic conditions. Oncogenesis. 2016, 5, e232.
[44] Jihan, Y.; Mostafa, B. Peroxisome proliferator-activated receptors and cancer: challenges and opportunities. Br. J. Pharmacol. 2011, 164, 68-82.
[45] Rolf, M. PPARβ/δ in human cancer. Biochimie. 2017, 136, 90-99.
[46] Maria, G.B.; Jane, A.M. Targeting PPAR receptors in the airway for the treatment of inflammatory lung disease. Br. J. Pharmacol. 2009, 158, 994-1003
[47] Min, H.P.; Ji, Y.P.; Hye, J. L.; Dae, H.K.; Ki, W.C.; Daeui, P.; Hyoung, O.J.; Hye, R.K.; Chan, H.P.; So, R.K.; Pusoon, C.; Young, J.B.; Hyung, R.M.; Hae, Y.C. The Novel PPAR α/γ Dual Agonist MHY966 Modulates UVB-Induced Skin Inflammation by Inhibiting NF-kB Activity. PLoS One. 2013, 8, e76820.
[48] Wai, S.C.; Xiao, Y.T.; Wing, T.W.; Yu, H. The peroxisome proliferator-activated receptors in cardiovascular diseases: experimental benefits and clinical challenges. Br. J. Pharmacol. 2014, 172, 5512-5522. |