Journal of Chinese Pharmaceutical Sciences ›› 2024, Vol. 33 ›› Issue (7): 631-646.DOI: 10.5246/jcps.2024.07.047
• Original articles • Previous Articles Next Articles
Xiaoyu Wei1,#, Luhang Yu2,#, Mengru Li3,#, Qiang Xu4,*()
Received:
2023-12-21
Revised:
2024-01-23
Accepted:
2024-03-12
Online:
2024-07-30
Published:
2024-07-30
Contact:
Qiang Xu
About author:
# Xiaoyu Wei, Luhang Yu and Mengru Li contributed equally to this work.
Supported by:
Supporting:
Xiaoyu Wei, Luhang Yu, Mengru Li, Qiang Xu. A network pharmacological study to investigate the combination of LHQW-XYS in the treatment of COVID-19 olfactory impairment-associated[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(7): 631-646.
[1] |
McFee, R.B. Severe acute respiratory syndrome coronavirus (SARS, SARS CoV). Disease-a-Month. 2020, 66, 101062.
|
[2] |
Abalo-Lojo, J.M.; Pouso-Diz, J.M.; Gonzalez, F. Taste and smell dysfunction in COVID-19 patients. Ann. Otol. Rhinol. Laryngol. 2020, 129, 1041–1042.
|
[3] |
Aggarwal, S.; Garcia-Telles, N.; Aggarwal, G.; Lavie, C.; Lippi, G.; Henry, B.M. Clinical features, laboratory characteristics, and outcomes of patients hospitalized with coronavirus disease 2019 (COVID-19): early report from the United States. Diagnosis. 2020, 7, 91–96.
|
[4] |
Gautier, J.F.; Ravussin, Y. A new symptom of COVID-19: loss of taste and smell. Obesity. 2020, 28, 848.
|
[5] |
Gilani, S.; Roditi, R.; Naraghi, M. COVID-19 and anosmia in Tehran, Iran. Med. Hypotheses. 2020, 141, 109757.
|
[6] |
Hopkins, C.; Surda, P.; Whitehead, E.; Kumar, B.N. Early recovery following new onset anosmia during the COVID-19 pandemic – an observational cohort study. J. Otolaryngol. Head Neck Surg. 2020, 49, 26.
|
[7] |
Huang, C.L.; Wang, Y.M.; Li, X.W.; Ren, L.L.; Zhao, J.P.; Hu, Y.; Zhang, L.; Fan, G.H.; Xu, J.Y.; Gu, X.Y.; Cheng, Z.S.; Yu, T.; Xia, J.A.; Wei, Y.; Wu, W.J.; Xie, X.L.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.G.; Wang, G.F.; Jiang, R.M.; Gao, Z.C.; Jin, Q.; Wang, J.W.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020, 395, 497–506.
|
[8] |
Merza, M.A.; Haleem Al Mezori, A.A.; Mohammed, H.M.; Abdulah, D.M. COVID-19 outbreak in Iraqi Kurdistan: the first report characterizing epidemiological, clinical, laboratory, and radiological findings of the disease. Diabetes Metab. Syndr. 2020, 14, 547–554.
|
[9] |
Lechien, J.R.; Chiesa-Estomba, C.M.; De Siati, D.R.; Horoi, M.; Le Bon, S.D.; Rodriguez, A.; Dequanter, D.; Blecic, S.; El Afia, F.; Distinguin, L.; Chekkoury-Idrissi, Y.; Hans, S.; Delgado, I.L.; Calvo-Henriquez, C.; Lavigne, P.; Falanga, C.; Barillari, M.R.; Cammaroto, G.; Khalife, M.; Leich, P.; Souchay, C.; Rossi, C.; Journe, F.; Hsieh, J.; Edjlali, M.; Carlier, R.; Ris, L.; Lovato, A.; De Filippis, C.; Coppee, F.; Fakhry, N.; Ayad, T.; Saussez, S. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur. Arch. Otorhinolaryngol. 2020, 277, 2251–2261.
|
[10] |
Beltrán-Corbellini, Á.; Chico-García, J.L.; Martínez-Poles, J.; Rodríguez-Jorge, F.; Natera-Villalba, E.; Gómez-Corral, J.; Gómez-López, A.; Monreal, E.; Parra-Díaz, P.; Cortés-Cuevas, J.L.; Galán, J.C.; Fragola-Arnau, C.; Porta-Etessam, J.; Masjuan, J.; Alonso-Cánovas, A. Acute-onset smell and taste disorders in the context of COVID-19: a pilot multicentre polymerase chain reaction based case-control study. Eur. J. Neurol. 2020, 27, 1738–1741.
|
[11] |
Brann, D.H.; Tsukahara, T.; Weinreb, C.; Lipovsek, M.; Van den Berge, K.; Gong, B.Y.; Chance, R.; MacAulay, I.C.; Chou, H.J.; Fletcher, R.B.; Das, D.; Street, K.; de Bezieux, H.R.; Choi, Y.G.; Risso, D.; Dudoit, S.; Purdom, E.; Mill, J.; Hachem, R.A.; Matsunami, H.; Logan, D.W.; Goldstein, B.J.; Grubb, M.S.; Ngai, J.; Datta, S.R. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv. 2020, 6, eabc5801.
|
[12] |
Eliezer, M.; Hautefort, C.; Hamel, A.L.; Verillaud, B.; Herman, P.; Houdart, E.; Eloit, C. Sudden and complete olfactory loss of function as a possible symptom of COVID-19. JAMA Otolaryngol. Head Neck Surg. 2020, 146, 674–675.
|
[13] |
Gorzkowski, V.; Bevilacqua, S.; Charmillon, A.; Jankowski, R.; Gallet, P.; Rumeau, C.; Nguyen, D. Evolution of olfactory disorders in COVID‐19 patients. Laryngoscope. 2020, 130, 2667–2673.
|
[14] |
Jung, A.Y.; Kim, Y.H. Reversal of olfactory disturbance in allergic rhinitis related to OMP suppression by intranasal budesonide treatment. Allergy Asthma Immunol. Res. 2020, 12, 110.
|
[15] |
Wong, S.K.; Li, W.H.; Moore, M.J.; Choe, H.; Farzan, M. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J. Biol. Chem. 2004, 279, 3197–3201.
|
[16] |
Miwa, T.; Ikeda, K.; Ishibashi, T.; Kobayashi, M.; Kondo, K.; Matsuwaki, Y.; Ogawa, T.; Shiga, H.; Suzuki, M.; Tsuzuki, K.; Furuta, A.; Motoo, Y.; Fujieda, S.; Kurono, Y. Clinical practice guidelines for the management of olfactory dysfunction - Secondary publication. Auris Nasus Larynx. 2019, 46, 653–662.
|
[17] |
Shen, X.H.; Yin, F.G. The mechanisms and clinical application of Traditional Chinese Medicine Lianhua-Qingwen capsule. Biomed. Pharmacother. 2021, 142, 111998.
|
[18] |
Ru, J.L.; Li, P.; Wang, J.N.; Zhou, W.; Li, B.H.; Huang, C.; Li, P.D.; Guo, Z.H.; Tao, W.Y.; Yang, Y.F.; Xu, X.; Li, Y.; Wang, Y.H.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13.
|
[19] |
Mu, C.L.; Sheng, Y.F.; Wang, Q.; Amin, A.; Li, X.G.; Xie, Y.Q. Potential compound from herbal food of Rhizoma Polygonati for treatment of COVID-19 analyzed by network pharmacology: viral and cancer signaling mechanisms. J. Funct. Foods. 2021, 77, 104149.
|
[20] |
Pei, T.L.; Zheng, C.L.; Huang, C.; Chen, X.T.; Guo, Z.H.; Fu, Y.X.; Liu, J.L.; Wang, Y.H. Systematic understanding the mechanisms of vitiligo pathogenesis and its treatment by Qubaibabuqi formula. J. Ethnopharmacol. 2016, 190, 272–287.
|
[21] |
Schoch, C.; Ciufo, S.; Domrachev, M.; Hotton, C.; Kannan, S.; Khovanskaya, R.; Leipe, D.; McVeigh, R.; O'Neill, K.; Robbertse, B.; Sharma, S.; Soussov, V.; Sullivan, J.P.; Sun, L.; Turner, S.; Karsch-Mizrachi, I. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database (Oxford). 2020, baaa062, 1–21.
|
[22] |
Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: network analysis and visualization of proteomics data. J. Proteome Res. 2019, 18, 623–632.
|
[23] |
Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014, 8, S11.
|
[24] |
Zhou, J.G.; Xiong, W.; Wang, Y.; Guan, J.H. Protein function prediction based on PPI networks: network reconstruction vs edge enrichment. Front. Genet. 2021, 12, 758131.
|
[25] |
Kontoyianni, M. Docking and virtual screening in drug discovery. Methods Mol. Biol. 2017, 1647, 255–266.
|
[26] |
El-Hachem, N.; Haibe-Kains, B.; Khalil, A.; Kobeissy, F.H.; Nemer, G. AutoDock and AutoDockTools for protein-ligand docking: beta-site amyloid precursor protein cleaving enzyme 1(BACE1) as a case study. Methods Mol. Biol. 2017, 1598, 391–403.
|
[27] |
Rosignoli, S.; Paiardini, A. Boosting the full potential of PyMOL with structural biology plugins. Biomolecules. 2022, 12, 1764.
|
[28] |
Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; Du, B.; Li, L.J.; Zeng, G.; Yuen, K.Y.; Chen, R.C.; Tang, C.L.; Wang, T.; Chen, P.Y.; Xiang, J.; Li, S.Y.; Wang, J.L.; Liang, Z.J.; Peng, Y.X.; Wei, L.; Liu, Y.; Hu, Y.H.; Peng, P.; Wang, J.M.; Liu, J.Y.; Chen, Z.; Li, G.; Zheng, Z.J.; Qiu, S.Q.; Luo, J.; Ye, C.J.; Zhu, S.Y.; Zhong, N.S. China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl. J. Med. 2020, 382, 1708–1720.
|
[29] |
Gopinath, B.; Anstey, K.J.; Kifley, A.; Mitchell, P. Olfactory impairment is associated with functional disability and reduced independence among older adults. Maturitas. 2012, 72, 50–55.
|
[30] |
Pinto, J.M.; Wroblewski, K.E.; Kern, D.W.; Schumm, L.P.; McClintock, M.K. Olfactory dysfunction predicts 5-year mortality in older adults. PLoS One. 2014, 9, e107541.
|
[31] |
Glezer, I.; Bruni-Cardoso, A.; Schechtman, D.; Malnic, B. Viral infection and smell loss: The case of COVID-19. J. Neurochem. 2021, 157, 930–943.
|
[32] |
Najafloo, R.; Majidi, J.; Asghari, A.; Aleemardani, M.; Kamrava, S.K.; Simorgh, S.; Seifalian, A.; Bagher, Z.; Seifalian, A.M. Mechanism of anosmia caused by symptoms of COVID-19 and emerging treatments. ACS Chem. Neurosci. 2021, 12, 3795–3805.
|
[33] |
Ahmed, A.K.; Sayad, R.; Mahmoud, I.A.; Abd EL-Monem, A.M.; Badry, S.H.; Ibrahim, I.H.; Hafez, M.H.; El-Mokhtar, M.A.; Sayed, I.M. "Anosmia" the mysterious collateral damage of COVID-19. J. NeuroVirology. 2022, 28, 189–200.
|
[34] |
Russell, B.; Moss, C.; Rigg, A.; Van Hemelrijck, M. COVID-19 and treatment with NSAIDs and corticosteroids: should we be limiting their use in the clinical setting? Ecancermedicalscience. 2020, 14, 1023.
|
[35] |
Zeng, Z.; Lan, T.X.; Wei, Y.Q.; Wei, X.W. CCL5/CCR5 axis in human diseases and related treatments. Genes Dis. 2022, 9, 12–27.
|
[36] |
Zhang, X.L.; Cao, D.; Liu, J.N.; Zhang, Q.; Liu, M.J. Efficacy and safety of Lianhua Qingwen combined with conventional antiviral Western Medicine in the treatment of coronavirus disease (covid-19) in 2019: protocol for a systematic review and meta-analysis. Medicine. 2020, 99, e21404.
|
[37] |
CDC Weekly, C. Protocol for prevention and control of COVID-19 (edition 6). China CDC Week. 2020, 2, 321–326.
|
[38] |
Ziuzia-Januszewska, L.; Januszewski, M. Pathogenesis of olfactory disorders in COVID-19. Brain Sci. 2022, 12, 449.
|
[39] |
Stein, S.R.; Ramelli, S.C.; Grazioli, A.; Chung, J.Y.; Singh, M.; Yinda, C.K.; Winkler, C.W.; Sun, J.; Dickey, J.M.; Ylaya, K.; Ko, S.H.; Platt, A.P.; Burbelo, P.D.; Quezado, M.; Pittaluga, S.; Purcell, M.; Munster, V.J.; Belinky, F.; Ramos-Benitez, M.J.; Boritz, E.A.; Lach, I.A.; Herr, D.L.; Rabin, J.; Saharia, K.K.; Madathil, R.J.; Tabatabai, A.; Soherwardi, S.; McCurdy, M.T. NIH COVID-19 Autopsy Consortium.; Peterson, K.E.; Cohen, J.I.; de Wit, E.; Vannella, K.M.; Hewitt, S.M.; Kleiner, D.E.; Chertow, D.S. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature. 2022, 612, 758–763.
|
[40] |
Kandemirli, S.G.; Altundag, A.; Yildirim, D.; Tekcan Sanli, D.E.; Saatci, O. Olfactory bulb MRI and paranasal sinus CT findings in persistent COVID-19 anosmia. Acad. Radiol. 2021, 28, 28–35.
|
[41] |
Liu, M.; Gao, Y.; Yuan, Y.; Yang, K.L.; Shi, S.Z.; Tian, J.H.; Zhang, J.H. Efficacy and safety of herbal medicine (Lianhuaqingwen) for treating COVID-19: a systematic review and meta-analysis. Integr. Med. Res. 2021, 10, 100644.
|
[42] |
Wang, P.; Zhang, H.Y.; Liu, Y.M. Research progress on chemical constituents, Pharmacological effects and clinical application of volatile oil From Magnolia liliflora. China Pharmacy. 2022, 33, 378–384.
|
[43] |
Kimura, Y.; Okuda, H.; Baba, K. Histamine-release effectors from Angelicadahurica var. Dahurica Root. J. Nat. Prod. 1997, 60, 249–251.
|
[44] |
Zou, J.Y.; Su, W.; Pan, Y.; Cui, J. Chemical Components and Pharmacological Action for Angelica dahurica Sinensis and Predictive Analysis on its Q-marker. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology. This article can be found online at http://kns.cnki.net/kcms/detail/11.5699.R.20230914.1254. 004.html.
|
[45] |
Hu, Y.L. Preliminary study on effects of Xixin oil on blood histamine and pathomorphological change in nasal mucosa in Guinea pigs with allergic rhinitis. Chin. J. Exp. Tradit. Med. Form. 2011, 17, 149–151.
|
[46] |
Zhang, X. The China Association of Chinese Medicine released the expert consensus on the treatment of common diseases after COVID-19 became negative with traditional Chinese medicine. J. Tradit. Chin. Med. Manage. 2023, 31, 7.
|
[47] |
Prasansuklab, A.; Theerasri, A.; Rangsinth, P.; Sillapachaiyaporn, C.; Chuchawankul, S.; Tencomnao, T. Anti-COVID-19 drug candidates: a review on potential biological activities of natural products in the management of new coronavirus infection. J. Tradit. Complement. Med. 2021, 11, 144–157.
|
[48] |
Tiboc-Schnell, C.N.; Filip, G.A.; Man, S.C.; Decea, N.; Moldovan, R.; Opris, R.; Sas, V.; Tabaran, F. Quercetin attenuates naso-sinusal inflammation and inflammatory response in lungs and brain on an experimental model of acute rhinosinusitis in rats. J. Physiol. Pharmacol. 2020, 71, 10.26402/jpp.2020.4.03.
|
[49] |
Theoharides, T.C. COVID-19, pulmonary mast cells, cytokine storms, and beneficial actions of luteolin. BioFactors. 2020, 46, 306–308.
|
[50] |
Shawan, M.M.A.K.; Halder, S.K.; Hasan, M.A. Luteolin and abyssinone II as potential inhibitors of SARS-CoV-2: an in silico molecular modeling approach in battling the COVID-19 outbreak. Bull Natl. Res. Cent. 2021, 45, 27.
|
[51] |
Di Stadio, A.; D'Ascanio, L.; Vaira, L.A.; Cantone, E.; De Luca, P.; Cingolani, C.; Motta, G.; De Riu, G.; Vitelli, F.; Spriano, G.; De Vincentiis, M.; Camaioni, A.; La Mantia, I.; Ferreli, F.; Brenner, M.J. Ultramicronized palmitoylethanolamide and luteolin supplement combined with olfactory training to treat post-COVID-19 olfactory impairment: a multi-center double-blinded randomized placebo- controlled clinical trial. Curr. Neuropharmacol. 2022, 20, 2001–2012.
|
[52] |
Yang, Y.; Tan, X.; Xu, J.G.; Wang, T.Y.; Liang, T.Y.; Xu, X.; Ma, C.C.; Xu, Z.M.; Wang, W.J.; Li, H.Y.; Shen, H.T.; Li, X.; Dong, W.L.; Chen, G. Luteolin alleviates neuroinflammation via downregulating the TLR4/TRAF6/NF-κB pathway after intracerebral hemorrhage. Biomed Pharmacother. 2020, 126, 1–12.
|
[53] |
Aziz, N.; Kim, M.Y.; Cho, J.Y. Anti-inflammatory effects of luteolin: a review of in vitro, in vivo, and in silico studies. J. Ethnopharmacol. 2018, 225, 342–358.
|
[54] |
Nabavi, S.F.; Braidy, N.; Gortzi, O.; Sobarzo-Sanchez, E.; Daglia, M.; Skalicka-Woźniak, K.; Nabavi, S.M. Luteolin as an anti-inflammatory and neuroprotective agent: a brief review. Brain Res. Bull. 2015, 119, 1–11.
|
[55] |
Lee, M.H.; Perl, D.P.; Nair, G.; Li, W.X.; Maric, D.; Murray, H.; Dodd, S.J.; Koretsky, A.P.; Watts, J.A.; Cheung, V.; Masliah, E.; Horkayne-Szakaly, I.; Jones, R.; Stram, M.N.; Moncur, J.; Hefti, M.; Folkerth, R.D.; Nath, A. Microvascular injury in the brains of patients with covid-19. N Engl. J. Med. 2021, 384, 481–483.
|
[56] |
Sun, Y.X.; Tao, Q.; Cao, Y.; Yang, T.T.; Zhang, L.; Luo, Y.F.; Wang, L. Kaempferol has potential anti-coronavirus disease 2019 (COVID-19) targets based on bioinformatics analyses and pharmacological effects on endotoxin-induced cytokine storm. Phytother. Res. 2023, 37, 2290–2304.
|
[57] |
Ahmadian, R.; Rahimi, R.; Bahramsoltani, R. Kaempferol: an encouraging flavonoid for COVID-19. Boletin Latinoamericano Y Del Caribe De Plantas Med. Y Aromat. 2020, 19, 492–494.
|
[58] |
Jung, H.W.; Jung, J.K.; Cho, C.W.; Kang, J.S.; Park, Y.K. Antiallergic effect of KOB03, a polyherbal medicine, on mast cell-mediated allergic responses in ovalbumin-induced allergic rhinitis mouse and human mast cells. J. Ethnopharmacol. 2012, 142, 684–693.
|
[59] |
Oh, H.A.; Han, N.R.; Kim, M.J.; Kim, H.M.; Jeong, H.J. Evaluation of the effect of kaempferol in a murine allergic rhinitis model. Eur. J. Pharmacol. 2013, 718, 48–56.
|
[60] |
Groeger, A.L.; Cipollina, C.; Cole, M.P.; Woodcock, S.R.; Bonacci, G.; Rudolph, T.K.; Rudolph, V.; Freeman, B.A.; Schopfer, F.J. Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids. Nat. Chem. Biol. 2010, 6, 433–441.
|
[61] |
Ricke-Hoch, M.; Stelling, E.; Lasswitz, L.; Gunesch, A.P.; Kasten, M.; Zapatero-Belinchón, F.J.; Brogden, G.; Gerold, G.; Pietschmann, T.; Montiel, V.; Balligand, J.L.; Facciotti, F.; Hirsch, E.; Gausepohl, T.; Elbahesh, H.; Rimmelzwaan, G.F.; Höfer, A.; Kühnel, M.P.; Jonigk, D.; Eigendorf, J.; Tegtbur, U.; Mink, L.; Scherr, M.; Illig, T.; Schambach, A.; Pfeffer, T.J.; Hilfiker, A.; Haverich, A.; Hilfiker-Kleiner, D. Impaired immune response mediated by prostaglandin E2 promotes severe COVID-19 disease. PLoS One. 2021, 16, e0255335.
|
[62] |
FitzGerald, G.A. Misguided drug advice for COVID-19. Science. 2020, 367, 1434.
|
[63] |
Qi, L.J.; Wang, R.Z.; Gao, S.; Chen, X.J.; Zhang, X.; Zhang, Y.P. Molecular mechanisms underlying the effects of bimin Kang mixture on allergic rhinitis: network pharmacology and RNA sequencing analysis. Biomed Res. Int. 2022, 2022, 7034078.
|
[64] |
Gold, P.W. The PPARg system in major depression: pathophysiologic and therapeutic implications. Int. J. Mol. Sci. 2021, 22, 9248.
|
[65] |
Fukui, N.; Honda, K.; Ito, E.; Ishikawa, K. Peroxisome proliferator-activated receptor γ negatively regulates allergic rhinitis in mice. Allergol. Int. 2009, 58, 247–253.
|
[66] |
Kang, H.J.; Cinn, Y.G.; Hwang, S.J.; Won Chae, S.; Woo, J.S.; Lee, S.H.; Lee, H.M. Up-regulation of peroxisome proliferator-activated receptor γ in perennial allergic rhinitis. Arch. Otolaryngol. 2006, 132, 1196–1200.
|
[67] |
Carboni, E.; Carta, A.R.; Carboni, E. Can pioglitazone be potentially useful therapeutically in treating patients with COVID-19? Med. Hypotheses. 2020, 140, 109776.
|
[68] |
Mukherjee, J.J.; Gangopadhyay, K.K.; Subir, R. Use of pioglitazone in people with type 2 diabetes mellitus with coronavirus disease 2019 (COVID-19): boon or bane? Diabetes Metab. Syndr. 2020, 14, 829–831.
|
[69] |
Josep, B.R.; Rong, S.; Roberts Paul, C.; Raquel, H. PPAR-γ activation as an anti-inflammatory therapy for respiratory virus infections. Viral Immunol. 2010, 23, 343–352.
|
[70] |
Francisqueti-Ferron, F.V.; Garcia, J.L.; Ferron, A.J.T.; Nakandakare-Maia, E.T.; Gregolin, C.S.; das Chagas Silva, J.P.; dos Santos, K.C.; Lo, Â.T.C.; Siqueira, J.S.; de Mattei, L.; de Paula, B.H.; Sarzi, F.; de Almeida Silva, C.C.V.; Moreto, F.; Costa, M.R.; Ferreira, A.L.A.; Minatel, I.O.; Corrêa, C.R. Gamma-oryzanol as a potential modulator of oxidative stress and inflammation via PPAR-y in adipose tissue: a hypothetical therapeutic for cytokine storm in COVID-19? Mol. Cell Endocrinol. 2021, 520, 111095.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||