Journal of Chinese Pharmaceutical Sciences ›› 2024, Vol. 33 ›› Issue (6): 481-494.DOI: 10.5246/jcps.2024.06.036
• Review • Next Articles
Received:
2024-01-15
Revised:
2024-02-25
Accepted:
2024-03-07
Online:
2024-06-30
Published:
2024-06-30
Contact:
Ying Fu
Supported by:
Supporting:
Litang Tan, Ying Fu. Exploring the impact of anti-diabetic medications on sarcopenia: a comprehensive review[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(6): 481-494.
[1] |
Kadoguchi, T.; Shimada, K.; Miyazaki, T.; Kitamura, K.; Kunimoto, M.; Aikawa, T.; Sugita, Y.; Ouchi, S.; Shiozawa, T.; Yokoyama-Nishitani, M.; Fukao, K.; Miyosawa, K.; Isoda, K.; Daida, H. Promotion of oxidative stress is associated with mitochondrial dysfunction and muscle atrophy in aging mice. Geriatr. Gerontol. Int. 2019, 20, 78–84.
|
[2] |
Al Saedi, A.; Debruin, D.A.; Hayes, A.; Hamrick, M. Lipid metabolism in sarcopenia. Bone. 2022, 164, 116539.
|
[3] |
Hiromine, Y.; Noso, S.; Rakugi, H.; Sugimoto, K.; Takata, Y.; Katsuya, T.; Fukuda, M.; Akasaka, H.; Osawa, H.; Tabara, Y.; Ikegami, H. Poor glycemic control rather than types of diabetes is a risk factor for sarcopenia in diabetes mellitus: the MUSCLES-DM study. J. Diabetes Investig. 2022, 13, 1881–1888.
|
[4] |
Bhardwaj, G.; Penniman, C.M.; Jena, J.; Suarez Beltran, P.A.; Foster, C.; Poro, K.; Junck, T.L.; Hinton, A.O. Jr, Souvenir, R.; Fuqua, J.D.; Morales, P.E.; Bravo-Sagua, R.; Sivitz, W.I.; Lira, V.A.; Abel, E.D.; O'Neill, B.T. Insulin and IGF-1 receptors regulate complex I-dependent mitochondrial bioenergetics and super complexes via FoxOs in muscle. J. Clin. Invest. 2021, 131, e146415.
|
[5] |
Wang, W.H.; Gu, X.C.; Cao, Z.Y.; Wang, X.J.; Lei, Y.M.; Xu, X.L.; Wang, S.W.; Wu, T.; Bao, Z. A potential correlation between adipokines, skeletal muscle function and bone mineral density in middle-aged and elderly individuals. Lipids Health Dis. 2023, 22, 111.
|
[6] |
Sato, M.; Fujita, H.; Yokoyama, H.; Mikada, A.; Horikawa, Y.; Takahashi, Y.; Yamada, Y.; Waki, H.; Narita, T. Relationships among postprandial plasma active GLP-1 and GIP excursions, skeletal muscle mass, and body fat mass in patients with type 2 diabetes treated with either miglitol, sitagliptin, or their combination: a secondary analysis of the MASTER study. J. Clin. Med. 2023, 12, 3104.
|
[7] |
Sencan, C.; Dost, F.S.; Ates Bulut, E.; Isik, A.T. DPP4 inhibitors as a potential therapeutic option for sarcopenia: a 6-month follow-up study in diabetic older patients. Exp. Gerontol. 2022, 164, 111832.
|
[8] |
Koshizaka, M.; Ishikawa, K.; Ishibashi, R.; Maezawa, Y.; Sakamoto, K.; Uchida, D.; Nakamura, S.; Yamaga, M.; Yokoh, H.; Kobayashi, A.; Onishi, S.; Kobayashi, K.; Ogino, J.; Hashimoto, N.; Tokuyama, H.; Shimada, F.; Ohara, E.; Ishikawa, T.; Shoji, M.; Ide, S.; Ide, K.; Baba, Y.; Hattori, A.; Kitamoto, T.; Horikoshi, T.; Shimofusa, R.; Takahashi, S.; Nagashima, K.; Sato, Y.; Takemoto, M.; Newby, L.K.; Yokote, K.; Group, P.V.S. Effects of ipragliflozin versus metformin in combination with sitagliptin on bone and muscle in Japanese patients with type 2 diabetes mellitus: Subanalysis of a prospective, randomized, controlled study (PRIME-V study). J. Diabetes Investig. 2021, 12, 200–206.
|
[9] |
Ishii, S.; Nagai, Y.; Kato, H.; Fukuda, H.; Tanaka, Y. Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin on muscle mass and the muscle/fat ratio in patients with type 2 diabetes. J. Clin. Med. Res. 2020, 12, 122–126.
|
[10] |
Rizzo, M.R.; Barbieri, M.; Marfella, R.; Paolisso, G. Reduction of oxidative stress and inflammation by blunting daily acute glucose fluctuations in patients with type 2 diabetes: role of dipeptidyl peptidase-IV inhibition. Diabetes Care. 2012, 35, 2076–2082.
|
[11] |
Rizzo, M.R.; Barbieri, M.; Fava, I.; Desiderio, M.; Coppola, C.; Marfella, R.; Paolisso, G. Sarcopenia in elderly diabetic patients: role of dipeptidyl peptidase 4 inhibitors. J. Am. Med. Dir. Assoc. 2016, 17, 896–901.
|
[12] |
Zhang, X.L.; Zhao, Y.; Chen, S.B.; Shao, H. Anti-diabetic drugs and sarcopenia: emerging links, mechanistic insights, and clinical implications. J. Cachexia Sarcopenia Muscle. 2021, 12, 1368–1379.
|
[13] |
Mele, A.; Calzolaro, S.; Cannone, G.; Cetrone, M.; Conte, D.; Tricarico, D. Database search of spontaneous reports and pharmacological investigations on the sulfonylureas and glinides-induced atrophy in skeletal muscle. Pharmacol. Res. Perspect. 2014, 2, e00028.
|
[14] |
Schemke, S.; de Wit, C. KATP channels and NO dilate redundantly intramuscular arterioles during electrical stimulation of the skeletal muscle in mice. Pflügers Arch. Eur. J. Physiol. 2021, 473, 1795–1806.
|
[15] |
Ma, R.C.W. Acarbose: an alternative to metformin for first-line treatment in type 2 diabetes? Lancet Diabetes Endocrinol. 2014, 2, 6–7.
|
[16] |
Jiang, L.L.; Xu, X.H.; Luo, M.H.; Wang, H.Y.; Ding, B.; Yan, R.N.; Hu, Y.; Ma, J.H. Association of acarbose with decreased muscle mass and function in patients with type 2 diabetes: a retrospective, cross-sectional study. Diabetes Ther. 2021, 12, 2955–2969.
|
[17] |
Zhu, Q.B.; Tong, Y.Z.; Wu, T.X.; Li, J.Q.; Tong, N.W. Comparison of the hypoglycemic effect of acarbose monotherapy in patients with type 2 diabetes mellitus consuming an eastern or western diet: a systematic meta-analysis. Clin. Ther. 2013, 35, 880–899.
|
[18] |
Wolf, V.L.W.; Breder, I.; de Carvalho, L.S.F.; Soares, A.A.S.; Cintra, R.M.; Barreto, J.; Munhoz, D.B.; Kimura-Medorima, S.T.; Nadruz, W.; Guerra-Júnior, G.; Quinaglia, T.; Muscelli, E.; Sposito, A.C.; Investigators, A.B. Dapagliflozin increases the lean-to total mass ratio in type 2 diabetes mellitus. Nutr. Diabetes. 2021, 11, 17.
|
[19] |
Kitazawa, T.; Seino, H.; Ohashi, H.; Inazawa, T.; Inoue, M.; Ai, M.; Fujishiro, M.; Kuroda, H.; Yamada, M.; Anai, M.; Ishihara, H. Comparison of tofogliflozin versus glimepiride as the third oral agent added to metformin plus a dipeptidyl peptidase-4 inhibitor in Japanese patients with type 2 diabetes: a randomized, 24-week, open-label, controlled trial (STOP-OB). Diabetes Obes. Metab. 2020, 22, 1659–1663.
|
[20] |
Sugimoto, K.; Ikegami, H.; Takata, Y.; Katsuya, T.; Fukuda, M.; Akasaka, H.; Tabara, Y.; Osawa, H.; Hiromine, Y.; Rakugi, H. Glycemic control and insulin improve muscle mass and gait speed in type 2 diabetes: the MUSCLES-DM study. J. Am. Med. Dir. Assoc. 2021, 22, 834–838.e1.
|
[21] |
Bouchi, R.; Fukuda, T.; Takeuchi, T.; Nakano, Y.; Murakami, M.; Minami, I.; Izumiyama, H.; Hashimoto, K.; Yoshimoto, T.; Ogawa, Y. Insulin treatment attenuates decline of muscle mass in Japanese patients with type 2 diabetes. Calcif. Tissue Int. 2017, 101, 1–8.
|
[22] |
Ferrari, U.; Then, C.; Rottenkolber, M.; Selte, C.; Seissler, J.; Conzade, R.; Linkohr, B.; Peters, A.; Drey, M.; Thorand, B. Longitudinal association of type 2 diabetes and insulin therapy with muscle parameters in the KORA-Age study. Acta Diabetol. 2020, 57, 1057–1063.
|
[23] |
Imre, E.; Apaydin, T.; Gunhan, H.G.; Yavuz, D.G. Determinants of high-dose insulin usage and upper extremity muscle strength in adult patients with type 2 diabetes. Can. J. Diabetes. 2021, 45, 341–345.
|
[24] |
Krzykała, M.; Domaszewska, K.; Woźniewicz-Dobrzyńska, M.; Kryściak, J.; Konarska, A.; Araszkiewicz, A.; Zozulińska-Ziółkiewicz, D.; Gawrecki, A.; Biegański, G.; Konarski, J.M. Characteristics of selected somatic and motor abilities of youth soccer players with diabetes type 1 treated with insulin pump therapy. Int. J. Environ. Res. Public Health. 2021, 18, 3493.
|
[25] |
Kjøbsted, R.; Hingst, J.R.; Fentz, J.; Foretz, M.; Sanz, M.N.; Pehmøller, C.; Shum, M.; Marette, A.; Mounier, R.; Treebak, J.T.; Wojtaszewski, J.F.P.; Viollet, B.; Lantier, L. AMPK in skeletal muscle function and metabolism. FASEB J. 2018, 32, 1741–1777.
|
[26] |
Senesi, P.; Montesano, A.; Luzi, L.; Codella, R.; Benedini, S.; Terruzzi, I. Metformin treatment prevents sedentariness related damages in mice. J. Diabetes Res. 2016, 2016, 8274689.
|
[27] |
Kanigur Sultuybek, G.; Soydas, T.; Yenmis, G. NF-κB as the mediator of metformin’s effect on ageing and ageing-related diseases. Clin. Exp. Pharmacol. Physiol. 2019, 46, 413–422.
|
[28] |
Petrocelli, J.J.; McKenzie, A.I.; de Hart, N.M.; Reidy, P.; Mahmassani, Z.; Keeble, A.R.; Kaput, K.L.; Wahl, M.P.; Rondina, M.; Marcus, R.; Welt, C.; Holland, W.; Funai, K.; Fry, C.; Drummond, M. Disuse‐induced muscle fibrosis, cellular senescence, and senescence‐associated secretory phenotype in older adults are alleviated during re‐ambulation with metformin pre‐treatment. Aging Cell. 2023, e13936.
|
[29] |
Zhu, Y.Q.; Chen, X.; Geng, S.S.; Li, Q.Q.; Li, Y.; Yuan, H.X.; Jiang, H. Identification of the cuproptosis-related hub genes and therapeutic agents for sarcopenia. Front. Genet. 2023, 14, 1136763.
|
[30] |
Yang, Y.F.; Liao, Z.Y.; Xiao, Q. Metformin ameliorates skeletal muscle atrophy in Grx1 KO mice by regulating intramuscular lipid accumulation and glucose utilization. Biochem. Biophys. Res. Commun. 2020, 533, 1226–1232.
|
[31] |
Ai, Y.Q.; Xu, R.X.; Liu, L.X. The prevalence and risk factors of sarcopenia in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr. 2021, 13, 93.
|
[32] |
Liu, Q.S. Thesis, Tianjin Agricultural University. 2021.
|
[33] |
Kang, M.J.; Moon, J.; Lee, J.O.; Kim, J.H.; Jung, E.J.; Kim, S.J.; Oh, J.Y.; Wu, S.W.; Lee, P.; Park, S.H.; Kim, H.S. Metformin induces muscle atrophy by transcriptional regulation of myostatin via HDAC6 and FoxO3a. J. Cachexia Sarcopenia Muscle. 2022, 13, 605–620.
|
[34] |
McKenzie, A.I.; Mahmassani, Z.S.; Petrocelli, J.J.; de Hart, N.M.M.P.; Fix, D.K.; Ferrara, P.J.; LaStayo, P.C.; Marcus, R.L.; Rondina, M.T.; Summers, S.A.; Johnson, J.M.; Trinity, J.D.; Funai, K.; Drummond, M.J. Short-term exposure to a clinical dose of metformin increases skeletal muscle mitochondrial H2O2 emission and production in healthy, older adults: a randomized controlled trial. Exp. Gerontol. 2022, 163, 111804.
|
[35] |
Neumiller J.J.; White J.R.; Campbell, R.K. Sodium-glucose co-transport inhibitors: progress and therapeutic potential in type 2 diabetes mellitus. Drugs. 2010, 70, 377–385.
|
[36] |
Zeng, Y.H.; Liu, S.C.; Lee, C.C.; Sun, F.J.; Liu, J.J. Effect of empagliflozin versus linagliptin on body composition in Asian patients with type 2 diabetes treated with premixed insulin. Sci. Rep. 2022, 12, 17065.
|
[37] |
Han, J.X.; Luo, L.L.; Wang, Y.C.; Miyagishi, M.; Kasim, V.; Wu, S.R. SGLT2 inhibitor empagliflozin promotes revascularization in diabetic mouse hindlimb ischemia by inhibiting ferroptosis. Acta Pharmacol. Sin. 2023, 44, 1161–1174.
|
[38] |
Xie, K.Y.; Sugimoto, K.; Tanaka, M.; Akasaka, H.; Fujimoto, T.; Takahashi, T.; Onishi, Y.; Minami, T.; Yoshida, S.; Takami, Y.; Yamamoto, K.; Rakugi, H. Effects of luseogliflozin treatment on hyperglycemia-induced muscle atrophy in rats. J. Clin. Biochem. Nutr. 2023, 72, 248–255.
|
[39] |
Hata, S.; Okamura, T.; Kobayashi, A.; Bamba, R.; Miyoshi, T.; Nakajima, H.; Kitagawa, N.; Hashimoto, Y.; Majima, S.; Senmaru, T.; Okada, H.; Ushigome, E.; Nakanishi, N.; Takakuwa, H.; Sasano, R.; Hamaguchi, M.; Fukui, M. Gut microbiota changes by an SGLT2 inhibitor, luseogliflozin, alters metabolites compared with those in a low carbohydrate diet in db/db mice. Nutrients. 2022, 14, 3531.
|
[40] |
Wu, H.Z.; Ballantyne, C.M. Skeletal muscle inflammation and insulin resistance in obesity. J. Clin. Investig. 2017, 127, 43–54.
|
[41] |
Sugiyama, S.; Jinnouchi, H.; Kurinami, N.; Hieshima, K.; Yoshida, A.; Jinnouchi, K.; Nishimura, H.; Suzuki, T.; Miyamoto, F.; Kajiwara, K.; Jinnouchi, T. Dapagliflozin reduces fat mass without affecting muscle mass in type 2 diabetes. J. Atheroscler. Thromb. 2018, 25, 467–476.
|
[42] |
Hajime, Y.; Masashi, T.; Takayuki, I.; Shinji, O.; Toru, K.; Noriko, S.A. Effects of dapagliflozin on the serum levels of fibroblast growth factor 21 and myokines and muscle mass in Japanese patients with type 2 diabetes: a randomized, controlled trial. J. Diabetes Investig. 2020, 11, 653–661.
|
[43] |
Nugrahaningrum, D.A.; Marcelina, O.; Liu, C.P.; Wu, S.R.; Kasim, V. Dapagliflozin promotes neovascularization by improving paracrine function of skeletal muscle cells in diabetic hindlimb ischemia mice through PHD2/HIF-1α axis. Front. Pharmacol. 2020, 11, 1104.
|
[44] |
Yasuda, M.; Iizuka, K.; Kato, T.; Liu, Y.Y.; Ken, T.K.; Nonomura, K.; Mizuno, M.; Yabe, D. Sodium-glucose cotransporter 2 inhibitor and sarcopenia in a lean elderly adult with type 2 diabetes: a case report. J. Diabetes Investig. 2020, 11, 745–747.
|
[45] |
Langer, H.T.; Ramsamooj, S.; Dantas, E.; Murthy, A.; Ahmed, M.; Hwang, S.K.; Grover, R.; Pozovskiy, R.; Liang, R.J.; Queiroz, A.L.; Brown, J.C.; White, E.P.; Janowitz, T.; Goncalves, M.D. Restoring adiponectin via rosiglitazone ameliorates tissue wasting in mice with lung cancer. bioRxiv. 2023, DOI: 10.1101/2023.07.31.551241.
|
[46] |
Reusch, J.E.B.; Bridenstine, M.; Regensteiner, J.G. Type 2 diabetes mellitus and exercise impairment. Rev. Endocr. Metab. Disord. 2013, 14, 77–86.
|
[47] |
Reusch, J.E.B.; Regensteiner, J.G.; Watson, P.A. Novel actions of thiazolidinediones on vascular function and exercise capacity. Am. J. Med. 2003, 115, 69–74.
|
[48] |
Bastien, M.; Poirier, P.; Brassard, P.; Arsenault, B.J.; Bertrand, O.F.; Després, J.P.; Costerousse, O.; Piché, M.E. Effect of PPARγ agonist on aerobic exercise capacity in relation to body fat distribution in men with type 2 diabetes mellitus and coronary artery disease: a 1-yr randomized study. Am. J. Physiol. Endocrinol. Metab. 2019, 317, E65–E73.
|
[49] |
McClelland, T.J.; Fowler, A.J.; Davies, T.W.; Pearse, R.; Prowle, J.; Puthucheary, Z. Can Pioglitazone Be Used for Optimization of Nutrition in Critical Illness? A Systematic Review. JPEN. 2023, 47, 459–475.
|
[50] |
Shah, P.K.; Mudaliar, S.; Chang, A.R.; Aroda, V.; Andre, M.; Burke, P.; Henry, R.R. Effects of intensive insulin therapy alone and in combination with pioglitazone on body weight, composition, distribution and liver fat content in patients with type 2 diabetes. Diabetes Obes. Metab. 2011, 13, 505–510.
|
[51] |
Hassan, F.E.; Sakr, H.I.; Mohie, P.M.; Suliman, H.S.; Mohamed, A.S.; Attia, M.H.; Eid, D.M. Pioglitazone improves skeletal muscle functions in reserpine-induced fibromyalgia rat model. Ann. Med. 2021, 53, 1033–1041.
|
[52] |
Fiorentino, T.V.; Monroy, A.; Kamath, S.; Sotero, R.; Cas, M.D.; Daniele, G.; Chavez, A.O.; Abdul-Ghani, M.; Hribal, M.L.; Sesti, G.; Tripathy, D.; DeFronzo, R.A.; Folli, F. Pioglitazone corrects dysregulation of skeletal muscle mitochondrial proteins involved in ATP synthesis in type 2 diabetes. Metabolism. 2021, 114, 154416.
|
[53] |
Yokoyama, I.; Yonekura, K.; Moritan, T.; Tateno, M.; Momose, T.; Ohtomo, K.; Inoue, Y.; Nagai, R. Troglitazone improves whole-body insulin resistance and skeletal muscle glucose use in type II diabetic patients. J. Nucl. Med. 2001, 42, 1005–1010.
|
[54] |
Shibuya, S.; Watanabe, K.; Sakuraba, D.; Abe, T.; Shimizu, T. Natural compounds that enhance motor function in a mouse model of muscle fatigue. Biomedicines. 2022, 10, 3073.
|
[55] |
Fan, D.M.; Wang, Y.; Liu, B.W.; Yin, F. Hypoglycemic drug liraglutide alleviates low muscle mass by inhibiting the expression of MuRF1 and MAFbx in diabetic muscle atrophy. J. Chin. Med. Assoc. 2022, 86, 166–175.
|
[56] |
Uchiyama, S.; Sada, Y.; Mihara, S.; Sasaki, Y.; Sone, M.; Tanaka, Y. Oral semaglutide induces loss of body fat mass without affecting muscle mass in patients with type 2 diabetes. J. Clin. Med. Res. 2023, 15, 377–383.
|
[57] |
Volpe, S.; Lisco, G.; Fanelli, M.; Racaniello, D.; Colaianni, V.; Lavarra, V.; Triggiani, D.; Crudele, L.; Triggiani, V.; Sabbà, C.; De Pergola, G.; Piazzolla, G. Oral semaglutide improves body composition and preserves lean mass in patients with type 2 diabetes: a 26-week prospective real-life study. Front. Endocrinol. 2023, 14, 1240263.
|
[58] |
Keskin, L.; Yaprak, B. Comparison of the effect of liraglutide and metformin therapy on the disease regulation and weight loss in obese patients with Type 2 diabetes mellitus. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 6813–6820.
|
[59] |
Chen, F.Q.; Xu, S.; Wang, Y.F.; Chen, F.; Cao, L.; Liu, T.T.; Huang, T.; Wei, Q.; Ma, G.J.; Zhao, Y.H.; Wang, D.F. Risk factors for sarcopenia in the elderly with type 2 diabetes mellitus and the effect of metformin. J. Diabetes Res. 2020, 2020, 1–10.
|
[60] |
Veelen, A.; Andriessen, C.; den Kamp, Y.O.; Erazo-Tapia, E.; de Ligt, M.; Mevenkamp, J.; Jörgensen, J.A.; Moonen-Kornips, E.; Schaart, G.; Esterline, R.; Havekes, B.; Oscarsson, J.; Schrauwen-Hinderling, V.B.; Phielix, E.; Schrauwen, P. Effects of the sodium-glucose cotransporter 2 inhibitor dapagliflozin on substrate metabolism in prediabetic insulin resistant individuals: a randomized, double-blind crossover trial. Metabolism. 2023, 140, 155396.
|
[61] |
Op den Kamp, Y.J.M.; Gemmink, A.; de Ligt, M.; Dautzenberg, B.; Kornips, E.; Jorgensen, J.A.; Schaart, G.; Esterline, R.; Pava, D.A.; Hoeks, J.; Schrauwen-Hinderling, V.B.; Kersten, S.; Havekes, B.; Koves, T.R.; Muoio, D.M.; Hesselink, M.K.C.; Oscarsson, J.; Phielix, E.; Schrauwen, P. Effects of SGLT2 inhibitor dapagliflozin in patients with type 2 diabetes on skeletal muscle cellular metabolism. Mol. Metab. 2022, 66, 101620.
|
[62] |
Matsuba, I.; Takihata, M.; Takai, M.; Maeda, H.; Kubota, A.; Iemitsu, K.; Umezawa, S.; Obana, M.; Kaneshiro, M.; Kawata, T.; Takuma, T.; Takeda, H.; Machimura, H.; Mokubo, A.; Motomiya, T.; Asakura, T.; Kikuchi, T.; Matsuzawa, Y.; Ito, S.; Miyakawa, M.; Terauchi, Y.; Kanamori, A. Effects of 1‐year treatment with canagliflozin on body composition and total body water in patients with type 2 diabetes. Diabetes. 2021, 23, 2614–2622.
|
[1] | Ying Fu, Simo Liu, Yan Ma, Nannan Wu. Canagliflozin, an inhibitor of sodium-glucose co-transporter 2, advances in the treatment of type 2 diabetes [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(8): 569-588. |
[2] | Weiping Zhao, Qi Ge, Zijun Ding, Leizhi Pan, Ziqing Gu, Yang Liu, Hua Cai. Network pharmacology and metabolomics-based detection of the potential pharmacological effects of the active components in Chrysanthemum morifolium 'Chuju' [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(6): 412-428. |
[3] | Rui Li, Yanru Kong. Effects of linagliptin on inflammatory factors and arteriosclerosis in patients with newly diagnosed type 2 diabetes mellitus [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(8): 692-698. |
[4] | Ye Yao, Xiangfei Jiu, Siyuan Wang, Wei Lu, Tianyan Zhou. Mechanism-based pharmacokinetic/pharmacodynamic modeling of the effects of sitagliptin on DPP-4 activity, insulin and glucose in diabetic rats [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(6): 371-382. |
[5] | Yihua Hong, Tongtong Liu, Yanjun Liu, Jingxuan Wu, Xiaogai Yang. Vanadium compounds induce stronger growth suppression in PTEN-deficient prostate cancer cells by ROS-mediated mechanism [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(6): 432-439. |
[6] | Qin Hu, Hulin Tang, Hong Shao. Incretin-based therapies for type 2 diabetes with nonalcoholic fatty liver disease: a systematic review and meta-analysis [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(3): 206-214. |
[7] | Li Yao, Fangfang Fan, Lan Hu, Shengjun Zhao, Lili Zheng. Efficacy and safety of saxagliptin in patients with type 2 diabetes mellitus: a meta-analysis of randomized controlled trials [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(2): 128-139. |
[8] | Xiaohui Xie, Fei Wang, Jiayu Cui. The impact of obesity in managing diabetes [J]. Journal of Chinese Pharmaceutical Sciences, 2015, 24(6): 412-418. |
[9] | Mohd Fasih Ahmad, Raj K. Keservani, D J Mani Babu. Interaction study between Ocimum sanctum and Glimepiride (sulfonylurea derivative) in diabetic rats [J]. Journal of Chinese Pharmaceutical Sciences, 2015, 24(3): 156-163. |
[10] | Ziwei Wang, Na Wang, Meiling Huang, Xiaoda Yang. The long-term toxicity and hypoglycemic effect of vanadyl complexes on non-diabetic and type II diabetic mice [J]. Journal of Chinese Pharmaceutical Sciences, 2015, 24(11): 734-743. |
[11] | Xiaohui Bai, Youhong Niu, Decai Xiong, Yanfen Wu, Yunsen Li. Advances of N-terminal modifications of GLP-1 and their applications for the treatment of type 2 diabetes [J]. Journal of Chinese Pharmaceutical Sciences, 2015, 24(11): 701-711. |
[12] | Simin Yang, Liyan Ji, Linling Que, Kui Wang, Siwang Yu. Metformin activates Nrf2 signaling and induces the expression of antioxidant genes in skeletal muscle and C2C12 myoblasts [J]. Journal of Chinese Pharmaceutical Sciences, 2014, 23(12): 837-843. |
[13] | Fan Yi, Dong Li, Weizhi Ma, Quan Du*. GLP-1 biology and GLP-1 based antidiabetic therapy [J]. , 2013, 22(1): 7-27. |
[14] |
Qing Shen, Shan-Shan Gao, Yi-Ni Xie, Li-Cheng Ling, Feng Gao*.
Curative effect of novel oral carbon microspheres on streptozotocin-induced diabetes mellitus in rats [J]. , 2012, 21(3): 234-241. |
[15] | Khuram Shehzad, Maria Rasool, Mahjabeen Saleem*, Mamoona Naz . Polymorphisms in ghrelin and heparan sulfate proteoglycan genes and their association with diabetic nephropathy in Pakistani population [J]. , 2012, 21(3): 259-264. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||