Journal of Chinese Pharmaceutical Sciences ›› 2024, Vol. 33 ›› Issue (2): 98-109.DOI: 10.5246/jcps.2024.02.009
• Original articles • Previous Articles Next Articles
Yuying Zhang1,2, Pingping Zhang2, Hanxin Ding2, Xin Zhang1,*(), Ye Liu2,*()
Received:
2023-09-26
Revised:
2023-10-24
Accepted:
2023-11-18
Online:
2024-03-03
Published:
2024-03-03
Contact:
Xin Zhang, Ye Liu
Supporting:
Yuying Zhang, Pingping Zhang, Hanxin Ding, Xin Zhang, Ye Liu. HH-A, a honokiol derivative, alleviates hypoxic brain injury in the animal ischemic model by interacting with hemoglobin[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(2): 98-109.
[1] |
Kooman, J.P.; Stenvinkel, P.; Shiels, P.G.; Feelisch, M.; Canaud, B.; Kotanko, P. The oxygen cascade in patients treated with hemodialysis and native high-altitude dwellers: lessons from extreme physiology to benefit patients with end-stage renal disease. Am. J. Physiol. Renal Physiol. 2021, 320, F249–F261.
|
[2] |
MacIntyre, N.R. Tissue hypoxia: implications for the respiratory clinician. Respir. Care. 2014, 59, 1590–1596.
|
[3] |
Liu, M.; Wu, B.; Wang, W.Z.; Lee, L.M.; Zhang, S.H.; Kong, L.Z. Stroke in China: epidemiology, prevention, and management strategies. Lancet Neurol. 2007, 6, 456–464.
|
[4] |
Kongsawasdi, S.; Klaphajone, J.; Wivatvongvana, P.; Watcharasaksilp, K. Prognostic factors of functional outcome assessed by using the modified rankin scale in subacute ischemic stroke. J. Clin. Med. Res. 2019, 11, 375–382.
|
[5] |
Liu, N.; Zhang, X.L.; Jiang, S.Y.; Shi, J.H.; Cui, J.H.; Liu, X.L.; Han, L.F.; Gong, K.R.; Yan, S.C.; Xie, W.; Zhang, C.Y.; Shao, G. Neuroprotective mechanisms of DNA methyltransferase in a mouse hippocampal neuronal cell line after hypoxic preconditioning. Neural Regen. Res. 2020, 15, 2362–2368.
|
[6] |
Cheng, X.; Yang, Y.L.; Li, W.H.; Liu, M.; Zhang, S.H.; Wang, Y.H.; Du, G. Dynamic alterations of brain injury, functional recovery, and metabolites profile after cerebral ischemia/reperfusion in rats contributes to potential biomarkers. J. Mol. Neurosci. 2020, 70, 667–676.
|
[7] |
Sarrica, A.; Kirika, N.; Romeo, M.; Salmona, M.; Diomede, L. Safety and toxicology of magnolol and honokiol. Planta Med. 2018, 84, 1151–1164.
|
[8] |
Liu, X.Y.; Chen, X.L.; Zhu, Y.J.; Wang, K.W.; Wang, Y.Y. Effect of magnolol on cerebral injury and blood brain barrier dysfunction induced by ischemia-reperfusion in vivo and in vitro. Metab. Brain Dis. 2017, 32, 1109–1118.
|
[9] |
Liou, K.T.; Shen, Y.C.; Chen, C.F.; Tsao, C.M.; Tsai, S.K. Honokiol protects rat brain from focal cerebral ischemia-reperfusion injury by inhibiting neutrophil infiltration and reactive oxygen species production. Brain Res. 2003, 992, 159–166.
|
[10] |
Shen, J.L.; Man, K.M.; Huang, P.H.; Chen, W.C.; Chen, D.C.; Cheng, Y.W.; Liu, P.L.; Chou, M.C.; Chen, Y.H. Honokiol and magnolol as multifunctional antioxidative molecules for dermatologic disorders. Molecules. 2010, 15, 6452–6465.
|
[11] |
Talarek, S.; Listos, J.; Barreca, D.; Tellone, E.; Sureda, A.; Nabavi, S.F.; Braidy, N.; Nabavi, S.M. Neuroprotective effects of honokiol: from chemistry to medicine. BioFactors. 2017, 43, 760–769.
|
[12] |
Zhao, S.; Liu, X.; Zhu, Y.; Liu, Y.; Wang, Y. The proteomic study and the target discovery of W026B, a new compound with brain protective effect. J. Chin. Pharm. Sci. 2019, 28, 381–392.
|
[13] |
Ye, Z. A new compound W026B alleviates ischemic brain injury through inhibiting the production of inflammatory cytokines in pMCAO and tMCAO, and enhances the beneficial effect of tPA. J. Chin. Pharm. Sci. 2018, 27, 675–685.
|
[14] |
Li, H.F.; Liu, X.Y.; Zhu, Y.J.; Liu, Y.; Wang, Y.Y. Magnolol derivative 002C-3 protects brain against ischemia-reperfusion injury via inhibiting apoptosis and autophagy. Neurosci. Lett. 2015, 588, 178–183.
|
[15] |
Bu, Q.X.; Liu, X.Y.; Zhu, Y.J.; Liu, Y.; Wang, Y.Y. w007B protects brain against ischemia-reperfusion injury in rats through inhibiting inflammation, apoptosis and autophagy. Brain Res. 2014, 1558, 100–108.
|
[16] |
Wei, M.; Huang, J.; Cui, Y.; Su, W.T.; Li, X.X.; Guan, L.B.; Shen, Y. Effect of GBT440 on oxygen-carrying characteristics and its anti-hypoxia effect in hypoxia animal model. J. Third Military Med. Univ. 2020, 42, 923–928.
|
[17] |
Chiang, T.; Messing, R.O.; Chou, W.H. Mouse model of middle cerebral artery occlusion. J. Vis. Exp. 2011, 2761.
|
[18] |
Fluri, F.; Schuhmann, M.K.; Kleinschnitz, C. Animal models of ischemic stroke and their application in clinical research. Drug Des. Devel. Ther. 2015, 9, 3445–3454.
|
[19] |
Sommer, C.J. Ischemic stroke: experimental models and reality. Acta Neuropathol. 2017, 133, 245–261.
|
[20] |
Han, P.; Luan, F.; Yan, X.Z.; Gao, Y.; Liu, H.T. Separation and determination of honokiol and magnolol in Chinese traditional medicines by capillary electrophoresis with the application of response surface methodology and radial basis function neural network. J. Chromatogr. Sci. 2012, 50, 71–75.
|
[21] |
Rycek, L.; Puthenkalam, R.; Schnürch, M.; Ernst, M.; Mihovilovic, M.D. Metal-assisted synthesis of unsymmetrical magnolol and honokiol analogs and their biological assessment as GABAA receptor ligands. Bioorg. Med. Chem. Lett. 2015, 25, 400–403.
|
[22] |
Huang, K.M.; Chen, Y.Y.; Zhang, R.; Wu, Y.Z.; Ma, Y.; Fang, X.Q.; Shen, S.Y. Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis. 2018, 9, 157.
|
[23] |
Banik, K.; Ranaware, A.M.; Deshpande, V.; Nalawade, S.P.; Padmavathi, G.; Bordoloi, D.; Sailo, B.L.; Shanmugam, M.K.; Fan, L.; Arfuso, F.; Sethi, G.; Kunnumakkara, A.B. Honokiol for cancer therapeutics: a traditional medicine that can modulate multiple oncogenic targets. Pharmacol. Res. 2019, 144, 192–209.
|
[24] |
Hu, Z.Y.; Bian, X.L.; Liu, X.Y.; Zhu, Y.J.; Zhang, X.Y.; Chen, S.Z.; Wang, K.W.; Wang, Y.Y. Honokiol protects brain against ischemia-reperfusion injury in rats through disrupting PSD95-nNOS interaction. Brain Res. 2013, 1491, 204–212.
|
[25] |
Sulakhiya, K.; Kumar, P.; Jangra, A.; Dwivedi, S.; Hazarika, N.K.; Baruah, C.C.; Lahkar, M. Honokiol abrogates lipopolysaccharide-induced depressive like behavior by impeding neuroinflammation and oxido-nitrosative stress in mice. Eur. J. Pharmacol. 2014, 744, 124–131.
|
[26] |
Hu, K.; Wang, Y.Y. Anti-thrombotic effect of W007B, a newly synthesized compound, in vitro and in vivo. J. Chin. Pharm. Sci. 2014, 23, 760–764.
|
[27] |
Ward, D.S.; Karan, S.B.; Pandit, J.J. Hypoxia: developments in basic science, physiology and clinical studies. Anaesthesia. 2011, 66, 19–268.
|
[28] |
Li, S.J.; Hafeez, A.; Noorulla, F.; Geng, X.K.; Shao, G.; Ren, C.H.; Lu, G.W.; Zhao, H.; Ding, Y.C.; Ji, X.M. Preconditioning in neuroprotection: from hypoxia to ischemia. Prog. Neurobiol. 2017, 157, 79–91.
|
[29] |
Berger, M.M.; Grocott, M.P.W. Facing acute hypoxia: from the mountains to critical care medicine. Br J. Anaesth. 2017, 118, 283–286.
|
[30] |
Ahmed, M.H.; Ghatge, M.S.; Safo, M.K. Hemoglobin: structure, function and allostery. Subcell Biochem. 2020, 94, 345–382.
|
[31] |
Zhang, Y. Y.; Zhang, P. P.; Zhang, X.; Liu, Y. The anti-hypoxia protective effect of WYY026B by interacting with hemoglobin in red blood cells. Int. J. Clin. Exp. Dermatol. 2023, 88, 16–23.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||