Journal of Chinese Pharmaceutical Sciences ›› 2023, Vol. 32 ›› Issue (7): 539-550.DOI: 10.5246/jcps.2023.07.045
• Original articles • Previous Articles Next Articles
Fan Wang#, Ruili Li#, Wenjun Wang#, Xiaoyan Zhou#, Meiyou Liu, Jinyi Zhao, Aidong Wen, Jingwen Wang*(), Yanyan Jia*()
Received:
2022-11-17
Revised:
2022-12-21
Accepted:
2023-03-09
Online:
2023-07-31
Published:
2023-07-31
Contact:
Jingwen Wang, Yanyan Jia
About author:
Supporting:
Fan Wang, Ruili Li, Wenjun Wang, Xiaoyan Zhou, Meiyou Liu, Jinyi Zhao, Aidong Wen, Jingwen Wang, Yanyan Jia. α-Boswellic acid ameliorates acute kidney injury by inhibiting the TLR4-mediated inflammatory pathway[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 539-550.
[1] |
Song, N.; Thaiss, F.; Guo, L.L. NFκB and kidney injury. Front. Immunol. 2019, 10, 815.
|
[2] |
Zhu, G.M.; Pei, L.J.; Lin, F.; Yin, H.B.; Li, X.Y.; He, W.Y.; Liu, N.; Gou, X. Exosomes from human-bone-marrow-derived mesenchymal stem cells protect against renal ischemia/reperfusion injury via transferring miR-199a-3p. J. Cell Physiol. 2019, 234, 23736–23749.
|
[3] |
Basile, D.P.; Anderson, M.D.; Sutton, T.A. Pathophysiology of acute kidney injury. Compr. Physiol. 2012, 2, 1303–1353.
|
[4] |
Viñas, J.L.; Burger, D.; Zimpelmann, J.; Haneef, R.; Knoll, W.; Campbell, P.; Gutsol, A.; Carter, A.; Allan, D.S.; Burns, K.D. Transfer of microRNA-486-5p from human endothelial colony forming cell-derived exosomes reduces ischemic kidney injury. Kidney Int. 2016, 90, 1238–1250.
|
[5] |
Zhang, Y.K.; Jia, J.; Ding, Y.; Ma, Y.Z.; Shang, P.J.; Liu, T.L.; Hui, G.F.; Wang, L.; Wang, M.M.; Zhu, Z.H.; Li, Y.W.; Wen, A.D. Alpha-boswellic acid protects against ethanol-induced gastric injury in rats: involvement of nuclear factor erythroid-2-related factor 2/heme oxygenase-1 pathway. J. Pharm. Pharmacol. 2016, 68, 514–522.
|
[6] |
Ibrahim, N.; Wong, S.K.; Mohamed, I.N.; Mohamed, N.; Chin, K.Y.; Ima-Nirwana, S.; Shuid, A.N. Wound healing properties of selected natural products. Int. J. Environ. Res. Public Health. 2018, 15, 2360.
|
[7] |
Gurău, F.; Baldoni, S.; Prattichizzo, F.; Espinosa, E.; Amenta, F.; Procopio, A.D.; Albertini, M.C.; Bonafè, M.; Olivieri, F. Anti-senescence compounds: a potential nutraceutical approach to healthy aging. Ageing Res. Rev. 2018, 46, 14–31.
|
[8] |
Jantan, I.; Ahmad, W.; Bukhari, S.N.A. Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. Front. Plant Sci. 2015, 6, 655.
|
[9] |
Mária, J.; Ingrid, Ž. Effects of bioactive compounds on senescence and components of senescence associated secretory phenotypes in vitro. Food Funct. 2017, 8, 2394–2418.
|
[10] |
Panossian, A. Understanding adaptogenic activity: specificity of the pharmacological action of adaptogens and other phytochemicals. Ann. NY Acad. Sci. 2017, 1401, 49–64.
|
[11] |
Obrenovich, M.E.; Nair, N.G.; Beyaz, A.; Aliev, G.; Reddy, V.P. The role of polyphenolic antioxidants in health, disease, and aging. Rejuvenation Res. 2010, 13, 631–643.
|
[12] |
Zhao, W.Z.; Entschladen, F.; Liu, H.Y.; Niggemann, B.; Fang, Q.C.; Zaenker, K.S.; Han, R. Boswellic acid acetate induces differentiation and apoptosis in highly metastatic melanoma and fibrosarcoma cells. Cancer Detect. Prev. 2003, 27, 67–75.
|
[13] |
Cao, B.; Wei, X.C.; Xu, X.R.; Zhang, H.Z.; Luo, C.H.; Feng, B.; Xu, R.C.; Zhao, S.Y.; Du, X.J.; Han, L.; Zhang, D.K. Seeing the unseen of the combination of two natural resins, frankincense and myrrh: changes in chemical constituents and pharmacological activities. Molecules. 2019, 24, 3076.
|
[14] |
Xia, L.J.; Chen, D.; Han, R.; Fang, Q.C.; Waxman, S.; Jing, Y.K. Boswellic acid acetate induces apoptosis through caspase-mediated pathways in myeloid leukemia cells. Mol. Cancer Ther. 2005, 4, 381–388.
|
[15] |
Kunnumakkara, A.B.; Banik, K.; Bordoloi, D.; Harsha, C.; Sailo, B.L.; Padmavathi, G.; Roy, N.K.; Gupta, S.C.; Aggarwal, B.B. Googling the guggul (Commiphora and boswellia) for prevention of chronic diseases. Front. Pharmacol. 2018, 9, 686.
|
[16] |
Sheng, X.X.; Zuo, X.Y.; Liu, X.H.; Zhou, Y.; Sun, X. Crosstalk between TLR4 and Notch1 signaling in the IgA nephropathy during inflammatory response. Int. Urol. Nephrol. 2018, 50, 779–785.
|
[17] |
Zhang, R.L.; Guo, R.; Liu, Q.; Li, G.X.; Sun, B.; Huang, X.D. Selenium deficiency via the TLR4/TRIF/NF-κB signaling pathway leading to inflammatory injury in chicken spleen. Biol. Trace Elem. Res. 2021, 199, 693–702.
|
[18] |
Zhao, H.; Chen, Z.; Xie, L.J.; Liu, G.F. Suppression of TLR4/NF-κB signaling pathway improves cerebral ischemia-reperfusion injury in rats. Mol. Neurobiol. 2018, 55, 4311–4319.
|
[19] |
Erpicum, P.; Rowart, P.; Poma, L.; Krzesinski, J.M.; Detry, O.; Jouret, F. Administration of mesenchymal stromal cells before renal ischemia/reperfusion attenuates kidney injury and may modulate renal lipid metabolism in rats. Sci. Rep. 2017, 7, 8687.
|
[20] |
Muratsubaki, S.; Kuno, A.; Tanno, M.; Miki, T.; Yano, T.; Sugawara, H.; Shibata, S.; Abe, K.; Ishikawa, S.; Ohno, K.; Kimura, Y.; Tatekoshi, Y.; Nakata, K.; Ohwada, W.; Mizuno, M.; Miura, T. Suppressed autophagic response underlies augmentation of renal ischemia/reperfusion injury by type 2 diabetes. Sci. Rep. 2017, 7, 5311.
|
[21] |
Di Nardo, M.; Ficarella, A.; Ricci, Z.; Luciano, R.; Stoppa, F.; Picardo, S.; Picca, S.; Muraca, M.; Cogo, P. Impact of severe sepsis on serum and urinary biomarkers of acute kidney injury in critically ill children: an observational study. Blood Purif. 2013, 35, 172–176.
|
[22] |
Santos, W.J.Q.; Zanetta, D.M.T.; Pires, A.C.; Lobo, S.M.A.; Lima, E.Q.; Burdmann, E.A. Patients with ischaemic, mixed and nephrotoxic acute tubular necrosis in the intensive care unit: a homogeneous population? Crit. Care. 2006, 10, R68.
|
[23] |
Alsabbagh, M.M.; Asmar, A.; Ejaz, N.I.; Aiyer, R.K.; Kambhampati, G.; Ejaz, A.A. Update on clinical trials for the prevention of acute kidney injury in patients undergoing cardiac surgery. Am. J. Surg. 2013, 206, 86–95.
|
[24] |
Zhou, H.; Chen, J.H.; Yang, B.X. Low molecular weight fucoidan against renal ischemia-reperfusion injury via inhibition of the MAPK signaling pathway. FASEB J. 2013, 27, 704.1.
|
[25] |
Zhang, H.; Sun, X.Q.; Cao, J.M.; Zhou, H.T.; Guo, X.; Wang, Y. Protective effect of epimedium combined with oligomeric proanthocyanidins on exercise-induced renal ischemia-reperfusion injury of rats. Int. J. Clin. Exp. Med. 2014, 7, 5730–5736.
|
[26] |
Lewinska, A.; Sodagam, L.; Bloniarz, D.; Siems, K.; Wnuk, M.; Rattan, S.I.S. Plant-derived molecules α-boswellic acid acetate, praeruptorin-A, and salvianolic acid-B have age-related differential effects in young and senescent human fibroblasts in vitro. Molecules. 2019, 25, 141.
|
[27] |
Roy, S.; Khanna, S.; Krishnaraju, A.V.; Subbaraju, G.V.; Yasmin, T.; Bagchi, D.; Sen, C.K. Regulation of vascular responses to inflammation: inducible matrix metalloproteinase-3 expression in human microvascular endothelial cells is sensitive to antiinflammatory Boswellia. Antioxid. Redox Signal. 2006, 8, 653–660.
|
[28] |
Terrier, B.; Tamby, M.C.; Camoin, L.; Guilpain, P.; Broussard, C.; Bussone, G.; Yaïci, A.; Hotellier, F.; Simonneau, G.; Guillevin, L.; Humbert, M.; Mouthon, L. Identification of target antigens of antifibroblast antibodies in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2008, 177, 1128–1134.
|
[29] |
Roy, S.; Khanna, S.; Shah, H.; Rink, C.; Phillips, C.; Preuss, H.; Subbaraju, G.V.; Trimurtulu, G.; Krishnaraju, A.V.; Bagchi, M.; Bagchi, D.; Sen, C.K. Human genome screen to identify the genetic basis of the anti-inflammatory effects of Boswellia in microvascular endothelial cells. DNA Cell Biol. 2005, 24, 244–255.
|
[30] |
Shahzad, K.; Bock, F.; Dong, W.; Wang, H.J.; Kopf, S.; Kohli, S.; Al-Dabet, M.M.; Ranjan, S.; Wolter, J.; Wacker, C.; Biemann, R.; Stoyanov, S.; Reymann, K.; Söderkvist, P.; Groß, O.; Schwenger, V.; Pahernik, S.; Nawroth, P.P.; Gröne, H.J.; Madhusudhan, T.; Isermann, B. Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int. 2015, 87, 74–84.
|
[31] |
Mudaliar, H.; Pollock, C.; Komala, M.G.; Chadban, S.; Wu, H.L.; Panchapakesan, U. The role of Toll-like receptor proteins (TLR) 2 and 4 in mediating inflammation in proximal tubules. Am. J. Physiol. Renal Physiol. 2013, 305, F143–F154.
|
[32] |
Zare-Bidaki, M.; Hakimi, H.; Abdollahi, S.H.; Zainodini, N.; Arababadi, M.K.; Kennedy, D. TLR4 in toxoplasmosis; friends or foe? Microb. Pathog. 2014, 69/70, 28–32.
|
[33] |
Zhang, Q.; Lenardo, M.J.; Baltimore, D. 30 years of NF-κB: a blossoming of relevance to human pathobiology. Cell. 2017, 168, 37–57.
|
[34] |
Ma, B.; Hottiger, M.O. Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation. Front. Immunol. 2016, 7, 378.
|
[35] |
Bi, Y.H.; Zhu, Y.P.; Zhang, M.K.; Zhang, K.K.; Hua, X.Y.; Fang, Z.; Zhou, J.; Dai, W.J.; Cui, Y.X.; Li, J.; You, T. Effect of shikonin on spinal cord injury in rats via regulation of HMGB1/TLR4/NF-kB signaling pathway. Cell Physiol. Biochem. 2017, 43, 481–491.
|
[36] |
Courtois, G.; Gilmore, T.D. Mutations in the NF-kappaB signaling pathway: implications for human disease. Oncogene. 2006, 25, 6831–6843.
|
[1] | Limei Yang, Liman Wang, Xuhui Huang, Jie Zhuang. Warfarin affects the proliferation and apoptosis of lung cancer cells by regulating the Gas6/Axl/PI3K/Akt/NF-κB pathway [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(3): 190-199. |
[2] | Zhaojing Wang, Qingxia Xu, Jing Xu, Wei Xu, Xiuwei Yang. Anti-oxidative and anti-neuroinflammatory effects of corylin in H2O2-induced HT22 cells and LPS-induced BV2 cells by activating Nrf2/HO-1 and inhibiting NF-κB pathways [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(2): 85-100. |
[3] | Peijie Chen, Yuntian Zhang. PTP1B restrains the apoptosis of activated hepatic stellate cells (HSCs) induced by TRAIL during the resolution of liver fibrosis [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 867-880. |
[4] | Wuyinxiao Zheng, Haiping Li, Laichun Luo, Chunling Hu, Pengtao You. PI3K/AKT/mTOR pathway inhibition and miR-210-mediated suppression of Atg7 promote autophagy in TOPC-induced apoptosis of H1975 cells [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 881-892. |
[5] | Kai Li, Bingjie Tang, Xinlong Chai, Yang Ping, Lihong Wang, Jin Su. Sialic acid-functionalized targeted drug delivery systems: advances in tumor and inflammation therapy by binding to Siglecs or selectin receptors [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(10): 773-795. |
[6] | Chanjuan Zhang, Likun Hu, He Zhang, Xinyi Qi, Jian Huang, Dong Liu. 2-Hydroxycircumdatin C inhibits LPS-induced BV2 cells inflammatory response via down-regulation of TLR4-mediated NF-κB/MAPK and JAK2/STAT3 pathways [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(4): 239-249. |
[7] | Ziyi Wang, Xiaoyan Liu, Yuanjun Zhu, Ye Liu, Pingping Zhang, Yinye Wang. The protective effect of W026B on global cerebral ischemia/reperfusion injury model in rats [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(2): 108-116. |
[8] | Huijie Lv, Tuo Xv, Jun Peng, Gang Luo, Jianqin He, Sisi Yang, Tiancheng Zhang, Shuidong Feng, Hongyan Ling. Dihydromyricetin improves liver fat deposition in high-fat diet-induced obese mice [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(11): 824-839. |
[9] | Aihong Zhao, Tianxia Wang, Xiaoyan Liu, Weihong Zhao, Jianping Ma, Xiuwei Yang, Tao Guo, Youbo Zhang. Isolation of endophytic fungi with anti-inflammatory effect in vitro from Zanthoxylum armatum [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(7): 570-577. |
[10] | Chunyang Han, Taotao Sun, Guangtai Fan, Yawei Liu, Cuiyan Liu. Protective effects of Polygonatum sibiricum against CCl4-induced acute liver injury in rats through oxidative stress and mitochondrial apoptotic pathways [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(4): 306-318. |
[11] | Jiaqian Chen, Chen Jin, Bolun Xu, Huang Zhan, Rongrong Fu, Fengqin Li, Huilian Huang. Identification of major compounds of total flavonoids from Smilax china and evaluation of anti-inflammatory effect on phenol mucilage-induced pelvic inflammation in rats [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(2): 157-168. |
[12] | Qian Hong, Zenghui Wang, Yang Yang, Lu Gao, Zhao Yan. DGMI alleviates OGD/R-induced cell injury by regulating inflammatory and apoptosis signaling pathways [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(7): 455-469. |
[13] | Xiao Cheng, Yinglin Yang, Weihan Li, Man Liu, Shanshan Zhang, Yuehua Wang, Guanhua Du. Esculin alleviates acute kidney injury and inflammation induced by LPS in mice and its possible mechanism [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(5): 322-332. |
[14] | Jin Huang, Lingxin Yang, Ning Yang, Bowen Yuan, Hao Zhang, Mengyue Wang. The inhibitory activities of Urtica fissa to BPH [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(4): 236-243. |
[15] | Shi Wang, Lu Liu, Youbo Zhang, Wei Xu, Xiuwei Yang. Intestinal anti-inflammatory effects of main components of the fruits of Euodia rutaecarpa in a co-culture model of the human colorectal adenocarcinoma cells and RAW264.7 macrophages [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(12): 868-879. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||