[1] |
Corbella, X.; Montero, A.; Pujol, M.; Domínguez, M.A.; Ayats, J.; Argerich, M.J.; Garrigosa, F.; Ariza, J.; Gudiol, F. Emergence and rapid spread of carbapenem resistance during a large and sustained hospital outbreak of multiresistant Acinetobacter baumannii. J. Clin. Microbiol. 2000, 38, 4086–4095.
|
[2] |
Yigit, H.; Queenan, A.M.; Anderson, G.J.; Domenech-Sanchez, A.; Biddle, J.W.; Steward, C.D.; Alberti, S.; Bush, K.; Tenover, F.C. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of klebsiella pneumoniae. Antimicrob. Agents Chemother. 2001, 45, 1151–1161.
|
[3] |
Ambler, R.P. The structure of beta-lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1980, 289, 321–331.
|
[4] |
Pemberton, O.A.; Zhang, X.J.; Chen, Y. Molecular basis of substrate recognition and product release by the klebsiella pneumoniae carbapenemase (KPC-2). J. Med. Chem. 2017, 60, 3525–3530.
|
[5] |
Papp-Wallace, K.M.; Bethel, C.R.; Distler, A.M.; Kasuboski, C.; Taracila, M.; Bonomo, R.A. Inhibitor resistance in the KPC-2 β-lactamase, a preeminent property of this class A β-lactamase. Antimicrob. Agents Chemother. 2010, 54, 890–897.
|
[6] |
Walther-Rasmussen, J.; Høiby, N. Class A carbapenemases. J. Antimicrob. Chemother. 2007, 60, 470–482.
|
[7] |
Sanchez, G.V.; Master, R.N.; Clark, R.B.; Fyyaz, M.; Duvvuri, P.; Ekta, G.; Bordon, J. Klebsiella pneumoniae antimicrobial drug resistance, United States, 1998-2010. Emerg. Infect. Dis. 2013, 19, 133–136.
|
[8] |
Yanes-Díaz, J.; Palao-Suay, R.; Aguilar, M.R.; Riestra-Ayora, J.I.; Ferruelo-Alonso, A.; Rojo del Olmo, L.; Vázquez-Lasa, B.; Sanz-Fernández, R.; Sánchez-Rodríguez, C. Antitumor activity of nanoparticles loaded with PHT-427, a novel AKT/PDK1 inhibitor, for the treatment of head and neck squamous cell carcinoma. Pharmaceutics. 2021, 13, 1242.
|
[9] |
Li, X.H.; Wang, Q.; Zheng, J.; Guan, Y.; Liu, C.N.; Han, J.X.; Liu, S.X.; Liu, T.J.; Xiao, C.L.; Wang, X.; Liu, Y.S. PHT427 as an effective New Delhi metallo-β-lactamase-1 (NDM-1) inhibitor restored the susceptibility of meropenem against Enterobacteriaceae producing NDM-1. Front Microbiol. 2023, 14, 1168052.
|
[10] |
Shin, M.; Mun, D.; Choi, H.J.; Kim, S.; Payne, S.M.; Kim, Y. Identification of a new antimicrobial agent against bovine mastitis-causing Staphylococcus aureus. J. Agric. Food Chem. 2021, 69, 9968–9978.
|
[11] |
Zhou, Y.L.; Liu, S.; Wang, T.T.; Li, H.; Tang, S.S.; Wang, J.F.; Wang, Y.; Deng, X.M. Pterostilbene, a potential MCR-1 inhibitor that enhances the efficacy of polymyxin B. Antimicrob. Agents Chemother. 2018, 62, e02147-17.
|
[12] |
Chiang, T.; Mariano, N.; Urban, C.; Colon-Urban, R.; Grenner, L.; Eng, R.H.K.; Huang, D.; Dholakia, H.; Rahal, J.J. Identification of carbapenem-Resistant Klebsiella pneumoniae Harboring KPC enzymes in new jersey. Microb. Drug Resist. 2007, 13, 235–240.
|
[13] |
Xu, M.; Fu, Y.Q.; Fang, Y.H.; Xu, H.; Kong, H.S.; Liu, Y.C.; Chen, Y.; Li, L.J. High prevalence of KPC-2-producing hypervirulent Klebsiella pneumoniae causing meningitis in Eastern China. Infect. Drug Resist. 2019, 12, 641–653.
|
[14] |
Han, J.X.; Xiao, C.L.; Gan, M.L.; Li, X.H.; Wang, Y.; Zheng, J.Y.; Li, D.S.; Liu, C.N.; Guan, Y.; Meng, J.Z.; Huang, S.C.; Liu, Y.S. IMB-XH1 identified as a novel inhibitor of New Delhi metallo-β-lactamase-1. J. Chin. Pharm. Sci. 2019, 28, 238–246.
|
[15] |
Wang, Q.; Liu, C.N.; Han, J.X.; Liu, S.H.; Xiao, C.L.; Guan, Y.; Li, X.H.; Wang, Y.; Wang, X.; Meng, J.Z.; Gan, M.L.; Liu, Y.S. (–)-Epicatechin gallate serves as a novel new delhi metallo-β-lactamase-1 (NDM-1) inhibitor. J. Chin. Pharm. Sci. 2021, 30, 716–724.
|
[16] |
Papp-Wallace, K.M.; Taracila, M.A.; Smith, K.M.; Xu, Y.; Bonomo, R.A. Understanding the molecular determinants of substrate and inhibitor specificities in the Carbapenemase KPC-2: exploring the roles of Arg220 and Glu276. Antimicrob. Agents Chemother. 2012, 56, 4428–4438.
|
[17] |
Papp-Wallace, K.M.; Taracila, M.; Hornick, J.M.; Hujer, A.M.; Hujer, K.M.; Distler, A.M.; Endimiani, A.; Bonomo, R.A. Substrate selectivity and a novel role in inhibitor discrimination by residue 237 in the KPC-2 beta-lactamase. Antimicrob. Agents Chemother. 2010, 54, 2867–2877.
|
[18] |
Murphy, B.P.; Pratt, R.F. Evidence for an oxyanion hole in serine beta-lactamases and DD-peptidases. Biochem. J. 1988, 256, 669–672.
|
[19] |
Nukaga, M.; Yoon, M.J.; Taracilia, M.A.; Hoshino, T.; Becka, S.A.; Zeiser, E.T.; Johnson, J.R.; Papp-Wallace, K.M. Assessing the potency of β-lactamase inhibitors with diverse inactivation mechanisms against the PenA1 carbapenemase from Burkholderia multivorans. ACS Infect. Dis. 2021, 7, 826–837.
|
[20] |
Bush, K. Game changers: new β-lactamase inhibitor combinations targeting antibiotic resistance in gram-negative bacteria. ACS Infect. Dis. 2018, 4, 84–87.
|
[21] |
Liu, B.; Trout, R.E.L.; Chu, G.H.; McGarry, D.; Jackson, R.W.; Hamrick, J.C.; Daigle, D.M.; Cusick, S.M.; Pozzi, C.; De Luca, F.; Benvenuti, M.; Mangani, S.; Docquier, J.D.; Weiss, W.J.; Pevear, D.C.; Xerri, L.; Burns, C.J. Discovery of taniborbactam (VNRX-5133): a broad-spectrum serine- and metallo-β-lactamase inhibitor for carbapenem-resistant bacterial infections. J. Med. Chem. 2020, 63, 2789–2801.
|
[22] |
Hecker, S.J.; Reddy, K.R.; Lomovskaya, O.; Griffith, D.C.; Rubio-Aparicio, D.; Nelson, K.; Tsivkovski, R.; Sun, D.X.; Sabet, M.; Tarazi, Z.; Parkinson, J.; Totrov, M.; Boyer, S.H.; Glinka, T.W.; Pemberton, O.A.; Chen, Y.; Dudley, M.N. Discovery of cyclic boronic acid QPX7728, an ultrabroad-spectrum inhibitor of serine and metallo-β-lactamases. J. Med. Chem. 2020, 63, 7491–7507.
|
[23] |
Reddy, K.R.; Parkinson, J.; Sabet, M.; Tarazi, Z.; Boyer, S.H.; Lomovskaya, O.; Griffith, D.C.; Hecker, S.J.; Dudley, M.N. Selection of QPX7831, an orally bioavailable prodrug of boronic acid β-lactamase inhibitor QPX7728. J. Med. Chem. 2021, 64, 17523–17529.
|